如圖,已知拋物線的焦點在拋物線上.

(1)求拋物線的方程及其準線方程;
(2)過拋物線上的動點作拋物線的兩條切線、, 切點為、.若、的斜率乘積為,且,求的取值范圍.

(1)的方程為,其準線方程為(2)

解析試題分析:(1)的焦點為,                                     
所以,
的方程為,其準線方程為   
(2)任取點,設(shè)過點P的的切線方程為
,得
,化簡得
斜率分別為,則
因為,所以
所以
所以
考點:拋物線方程及支線與拋物線的位置關(guān)系
點評:當出現(xiàn)函數(shù)曲線在某一點處的切線時,常首先設(shè)出切點坐標,利用導(dǎo)數(shù)的幾何意義(函數(shù)在某一點處的導(dǎo)數(shù)值等于該點處的切線斜率)求出切線斜率寫出切線方程

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直接坐標系中,直線的方程為,曲線的參數(shù)方程為為參數(shù)).
(I)已知在極坐標(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,點的極坐標為(4,),判斷點與直線的位置關(guān)系;
(II)設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的離心率為,兩焦點分別為,點M是橢圓C上一點,的周長為16,設(shè)線段MO(O為坐標原點)與圓交于點N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當點在橢圓C上運動時,判斷直線與圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點B(0,1),點C(0,—3),直線PB、PC都是圓的切線(P點不在y軸上).
(I)求過點P且焦點在x軸上拋物線的標準方程;
(II)過點(1,0)作直線與(I)中的拋物線相交于M、N兩點,問是否存在定點R,使為常數(shù)?若存在,求出點R的坐標與常數(shù);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓C的方程;
(2)設(shè),是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
(3)在(2)的條件下,證明直線軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標系內(nèi),已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標系,曲線的參數(shù)方程為為參數(shù)).
(1)求曲線的直角坐標方程以及曲線的普通方程;
(2)設(shè)點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上.若橢圓上的點到焦點的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標.
(2)過點的直線與橢圓交于兩點、,當的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面內(nèi)與兩定點連線的斜率之積等于非零常數(shù)的點的軌跡,加上 兩點,所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當時,對應(yīng)的曲線為;對給定的,對應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點,且為坐標原點),求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點分別為
上頂點為,在軸負半軸上有一點,滿足,且

(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點的圓上的點,到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,線段的中垂線與軸相交于點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案