從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,計算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
xi2=720.
(1)求家庭的月儲蓄對月收入的回歸方程;
(2)判斷月收入與月儲蓄之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
考點:線性回歸方程
專題:應用題,概率與統(tǒng)計
分析:(1)由題意可知n,
.
x
.
y
,進而代入可得b、a值,可得方程;
(2)由回歸方程x的系數(shù)b的正負可判;
(3)把x=7代入回歸方程求其函數(shù)值即可.
解答: 解:(1)由題意,n=10,
.
x
=
1
n
10
i=1
xi=8,
.
y
=
1
n
10
i=1
yi=2,
∴b=
184-10×8×2
720-10×82
=0.3,a=2-0.3×8=-0.4,
∴y=0.3x-0.4;
(2)∵b=0.3>0,
∴y與x之間是正相關;
(3)x=7時,y=0.3×7-0.4=1.7(千元).
點評:本題考查線性回歸方程的求解及應用,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過點P(0,5)的直線l被圓C:x2+y2+4x-12y+24=0所截得的線段長4
3
,則l的方程為( 。
A、3x-4y+20=0或x=0
B、3x-4y+20=0
C、x=0
D、4x-3y+20=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下表是關于宿州市服裝機械廠某設備的使用年限x(年)和所需要的維修費用y(萬元)的幾組統(tǒng)計數(shù)據(jù):
X23456
y2.23.85.56.57.0
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于的線性回歸方程;
(2)估計使用年限為10年時,維修費用為多少?
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(-2,-3),圓C:(x-4)2+(y-2)2=9,過P點作圓C的兩條切線,切點分別為A、B
(1)求過P、A、B三點的外接圓的方程;
(2)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,則|
AB
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=3,求下列各式的值
(1)
4sinα-cosα
3sinα+5cosα
;
(2)
sin2-2sinα•cosα-cos2α
4cos2-3sin2α

(3)
3
4
sin2α+
1
2
cos2α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學生社團在對本校學生學習方法開展問卷調查的過程中發(fā)現(xiàn),在回收上來的1000份有效問卷中,同學們背英語單詞的時間安排共有兩種:白天背和晚上睡前背.為了研究背單詞時間安排對記憶效果的影響,該社團以5%的比例對這1000名學生按時間安排類型進行分層抽樣,并完成一項實驗.實驗方法是,使兩組學生記憶40個無意義音節(jié)(如XIQ、GEH),均要求在剛能全部記清時就停止識記,并在8小時后進行記憶檢測.不同的是,甲組同學識記結束后一直不睡覺,8小時后測驗;乙組同學識記停止后立刻睡覺,8小時后叫醒測驗.兩組同學識記停止8小時后的準確回憶(保持)情況如圖(區(qū)間含左端點而不含右端點).

(1)估計這1000名被調查學生中停止后8小時40個音節(jié)的保持率不小于60%的人數(shù);
(2)從乙組準確回憶單詞個數(shù)在[4,20)個范圍內的學生中隨機選2人,求能準確回憶[16,20)個單詞至少有一人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},{bn},a1=1,an=an-1+2n-1,bn=
an-1+1
anan+1
,Sn為數(shù)列{bn}的前n項和,Tn為數(shù)列{Sn}的前n項和.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和Sn
(Ⅲ)求證:Tn
n
2
-
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,滿足f(-1)=0,且對任意實數(shù)x,都有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤
1
4
(x+1)2
(1)求f(1)的值.
(2)求f(x)的解析式.
(3)若x∈[-1,1]時,函數(shù)g(x)=f(x)-mx是單調的,則求m的取值范圍.

查看答案和解析>>

同步練習冊答案