【題目】已知橢圓

1)若過(guò)點(diǎn)的直線(xiàn)l與橢圓C恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍;

2)若存在以點(diǎn)B0,2)為圓心的圓與橢圓C有四個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

【答案】(1).(2)

【解析】

1)點(diǎn)在橢圓上或橢圓內(nèi),解不等式即得;

2)要使得圓和橢圓有四個(gè)公共點(diǎn),利用對(duì)稱(chēng)性,考慮到軸上,只要在橢圓的左半邊(或右半邊)存在不同兩點(diǎn)到B點(diǎn)的距離相等,設(shè)動(dòng)點(diǎn)Qx0,y0)在橢圓上,,

,只要fy0)在y0∈(﹣1,1)上不單調(diào)即可.

1)要使得直線(xiàn)l與橢圓C恒有公共點(diǎn),則點(diǎn)要在橢圓上或者橢圓內(nèi),

,∴

2)法一:要使得圓和橢圓有四個(gè)公共點(diǎn),利用對(duì)稱(chēng)性,

所以在橢圓的左半邊(或右半邊)存在不同兩點(diǎn)到B點(diǎn)的距離相等,

設(shè)動(dòng)點(diǎn)Qx0,y0)在橢圓上,,

,使得fy0)在y0∈(﹣11)上不單調(diào),

法二:設(shè)圓Bx2+y22r2,

整理得:(1a2y24y+a2+4r20,

所以存在r,使得方程(1a2y24y+a2+4r20在(﹣1,1)上有兩解,

令函數(shù)fy)=(1a2y24y+a2+4r2,對(duì)稱(chēng)軸

只需即可,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是

(1)命題“,”的否定是“”;

(2)l為直線(xiàn),,為兩個(gè)不同的平面,若,則

(3)給定命題p,q,若“為真命題”,則是假命題;

(4)“”是“”的充分不必要條件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在三棱錐中,是直角三角形,

,點(diǎn)分別為的中點(diǎn).

1)求證:

2)求直線(xiàn)與平面所成角的大。

3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)斜率為的直線(xiàn)交橢圓,兩點(diǎn),且.若直線(xiàn)上存在點(diǎn)P,使得是以為頂角的等腰直角三角形,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的. [附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為.]

(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬(wàn)元)

1

2

3

4

5

銷(xiāo)售收益 (單位:萬(wàn)元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線(xiàn)性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)區(qū)間;

(2)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

點(diǎn)P是曲線(xiàn)C1:(x-2)2+y2=4上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,以極點(diǎn)O為中心,將點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡為曲線(xiàn)C2

(Ⅰ)求曲線(xiàn)C1,C2的極坐標(biāo)方程;

(Ⅱ)射線(xiàn)(ρ>0)與曲線(xiàn)C1,C2分別交于A,B兩點(diǎn),設(shè)定點(diǎn)M(2,0),求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行優(yōu)惠促銷(xiāo),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種:方案一:每滿(mǎn)200元減50元;方案二:每滿(mǎn)200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、1個(gè)白球的甲箱,2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(:所有小球僅顏色有區(qū)別)

(1)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得優(yōu)惠的概率;

(2)若某顧客選擇方案二,請(qǐng)分別計(jì)算該顧客獲得半價(jià)優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠的概率;

(3)若小明的購(gòu)物金額為320,你覺(jué)得小明應(yīng)該選取哪個(gè)方案,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線(xiàn)人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線(xiàn)人數(shù)增加了

C. 2015年與2018年藝體達(dá)線(xiàn)人數(shù)相同

D. 與2015年相比,2018年不上線(xiàn)的人數(shù)有所增加

查看答案和解析>>

同步練習(xí)冊(cè)答案