設(shè)f(x)=,求∫-11f(x)dx.
【答案】分析:分段函數(shù)的積分必須分段求解,故先將原式化成∫-1f(x)dx+∫1f(x)dx,再分別求各個(gè)和式的積分,最后只要求出被積函數(shù)的原函數(shù),結(jié)合積分計(jì)算公式求解即可.
解答:解:∫-11f(x)dx
=∫-1f(x)dx+∫1f(x)dx
=∫1(x-1)dx+∫1(x2+6)dx
=(x2-x)|-1+(x3+6x)|1
=-(+1)++6=
∴∫-11f(x)dx=
點(diǎn)評(píng):本小題主要考查定積分、定積分的應(yīng)用、導(dǎo)數(shù)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
13
x3-x2+ax+b
的圖象在點(diǎn)x=0處的切線方程為y=3x-2.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)設(shè)f′(x)≥6,求此不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=sinx+λi,z2=m+(m-
3
cosx)i(λ,m,x∈R),且z1=z2
(I)若λ=0,且0<x<π,求x的值;
(II)設(shè)f(x)=λcosx,求f(x)的最小正周期和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,有一塊半橢圓形鋼板,其長(zhǎng)半軸長(zhǎng)為2r,短半軸長(zhǎng)為r,計(jì)劃將此鋼板切割成等腰梯形的形狀,下底AB是半橢圓的短軸,上底CD的端點(diǎn)在橢圓上,記CD=2x,梯形面積為S.以AB為x軸,AB中點(diǎn)為原點(diǎn)建立平面直角坐標(biāo)系.
(Ⅰ)寫出該半橢圓的方程;求面積S以x為自變量的函數(shù)式,并寫出其定義域;
(Ⅱ)設(shè)f(x)=S2,求f(x)的最大值,并求出此時(shí)的x值(均用r表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式的圖象在點(diǎn)x=0處的切線方程為y=3x-2.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)設(shè)f′(x)≥6,求此不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建省龍巖市一級(jí)達(dá)標(biāo)學(xué)校聯(lián)盟高中高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知復(fù)數(shù)z1=sinx+λi,z2=m+(m-cosx)i(λ,m,x∈R),且z1=z2
(I)若λ=0,且0<x<π,求x的值;
(II)設(shè)f(x)=λcosx,求f(x)的最小正周期和單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案