分析 由對數(shù)式的真數(shù)大于0,求解三角不等式得函數(shù)y=lgsinx的定義域;由分式的分母不為0,結(jié)合正切函數(shù)的定義域求得函數(shù)y=$\frac{5tanx}{1+2sinx}$的定義域.
解答 解:由sinx>0,得2kπ<x<2kπ+π,k∈Z.
∴函數(shù)y=lgsinx的定義域是{x|2kπ<x<2kπ+π,k∈Z};
要使函數(shù)y=$\frac{5tanx}{1+2sinx}$有意義,則$\left\{\begin{array}{l}{x≠\frac{π}{2}+kπ,k∈Z}\\{1+2sinx≠0}\end{array}\right.$,
即$x≠\frac{π}{2}+kπ$,且x$≠2kπ-\frac{5π}{6}$且x$≠2kπ-\frac{π}{6}$,k∈Z.
∴函數(shù)y=$\frac{5tanx}{1+2sinx}$的定義域是{x|$x≠\frac{π}{2}+kπ$,且x$≠2kπ-\frac{5π}{6}$且x$≠2kπ-\frac{π}{6}$,k∈Z}.
故答案為:{x|2kπ<x<2kπ+π,k∈Z};{x|$x≠\frac{π}{2}+kπ$,且x$≠2kπ-\frac{5π}{6}$且x$≠2kπ-\frac{π}{6}$,k∈Z}.
點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查了正切函數(shù)的定義域,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 鈍角三角形 | B. | 銳角三角形 | C. | 等腰三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | π+1 | C. | $\sqrt{{π}^{2}+1}$ | D. | $\sqrt{{π}^{2}+9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k+1 | B. | 1•(k+1)+(k+1)•1 | C. | 1+2+3+…+k | D. | 1+2+3+…+k+(k+1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com