【題目】某校高三文科名學(xué)生參加了月份的模擬考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、語文情況,利用隨機數(shù)表法從中抽取名學(xué)生的成績進行統(tǒng)計分析,抽出的名學(xué)生的數(shù)學(xué)、語文成績?nèi)缦卤?
(1)將學(xué)生編號為:, 若從第行第列的數(shù)開始右讀,請你依次寫出最先抽出的 個人的編號(下面是摘自隨機用表的第四行至第七行)
(2)若數(shù)學(xué)優(yōu)秀率為,求的值;
(3)在語文成績?yōu)榱嫉膶W(xué)生中,已知,求數(shù)學(xué)成績“優(yōu)”比“良”的人數(shù)少的概率.
【答案】(1)(2),(3)
【解析】
試題分析:(1)從第行第列的數(shù)開始右讀,為563,564,385,482,462,231,624,309,去掉超過500的得(2)由優(yōu)秀率得,即得,再根據(jù)總數(shù)為100,得(3)先由總數(shù)為100,得因為,所以利用枚舉法得滿足條件的有種,其中數(shù)學(xué)成績“優(yōu)”比“良”的人數(shù)少包含5種,最后根據(jù)古典概型概率求法得概率.
試題解析:(1)編號依次為:.
(2)由,得,因為,得.
(3)由題意且,所以滿足條件的有,共種,且每組出現(xiàn)都是等可能的.記: “數(shù)學(xué)成績“優(yōu)”比“良”的人數(shù)少” 為事件,則事件包含的基本事件有,共種,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的房頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系,若不建隔熱層,每年能源消耗費用為8萬元,設(shè)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,證明:在定義域上為減函數(shù);
(2)若時,討論函數(shù)的零點情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)中,是棱上一點.
(1)若分別是的中點,求證:平面;
(2)求證:不論在何位置,四棱錐的體積都為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)中,是棱上一點.
(1)若分別是的中點,求證:平面;
(2)若是上靠近點的一個三等分點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,已知,,,設(shè)為的前項和.
(1)求證:數(shù)列是等差數(shù)列;
(2)求;
(3)是否存在正整數(shù),,,使成等差數(shù)列?若存在,求出,,的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,,是6與的等差中項.
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使不等式恒成立,若存在,求出的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明當(dāng)時,關(guān)于的不等式恒成立;
(3)若正實數(shù)滿足,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點.
(Ⅰ)證明:AD⊥D1F;
(Ⅱ)求AE與D1F所成的角;
(Ⅲ)證明:面AED⊥面A1FD1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com