2.已知a∈R,“函數(shù)y=3x+a-1有零點(diǎn)”是“函數(shù)y=logax在(0,+∞)上為減函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 函數(shù)y=3x+a-1有零點(diǎn),可得a=1-3x<1.由函數(shù)y=logax在(0,+∞)上為減函數(shù),可得0<a<1.即可判斷出結(jié)論.

解答 解:函數(shù)y=3x+a-1有零點(diǎn),則a=1-3x<1.
由函數(shù)y=logax在(0,+∞)上為減函數(shù),可得0<a<1.
∴函數(shù)y=3x+a-1有零點(diǎn)”是“函數(shù)y=logax在(0,+∞)上為減函數(shù)”的必要不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在直角梯形ABCD中,AB∥CD,∠ADC=90°,AB=3,AD=$\sqrt{2}$,E為BC中點(diǎn),若$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,則$\overrightarrow{AE}$•$\overrightarrow{BC}$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且3bsinA=2$\sqrt{3}$asinC.
(1)若A+3C=π,求sinB的值;
(2)若c=3,△ABC的面積為3$\sqrt{2}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知1是lga與lgb的等比中項(xiàng),若a>1,b>1,則ab有( 。
A.最小值10B.最小值100C.最大值10D.最大值100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某校高一年級(jí)學(xué)生全部參加了體育科目的達(dá)標(biāo)測(cè)試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測(cè)試成績(jī),整理數(shù)據(jù)并按分?jǐn)?shù)段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]進(jìn)行分組,假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,則得到體育成績(jī)的折線圖(如圖).
(Ⅰ)體育成績(jī)大于或等于70分的學(xué)生常被稱為“體育良好”.已知該校高一年級(jí)有1000名學(xué)生,試估計(jì)高一年級(jí)中“體育良好”的學(xué)生人數(shù);
(Ⅱ)為分析學(xué)生平時(shí)的體育活動(dòng)情況,現(xiàn)從體育成績(jī)?cè)赱60,70)和[80,90)的樣本學(xué)生中隨機(jī)抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績(jī)?cè)赱60,70)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某單位利用周末時(shí)間組織員工進(jìn)行一次“健康之路,攜手共筑”徒步走健身活動(dòng),有n人參加,現(xiàn)將所有參加人員按年齡情況分為[25,30),[30,35],[35,40),[40,45),[45,50),[50,55]六組,其頻率分布直方圖如圖所示.已知[35,40)歲年齡段中的參加者有8人.
(1)求n的值并補(bǔ)全頻率分布直方圖;
(2)從[30,40)歲年齡段中采用分層抽樣的方法抽取5人作為活動(dòng)的組織者,其中選取2人作為領(lǐng)隊(duì),在選取的2名領(lǐng)隊(duì)中至少有1人的年齡在[35,40)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)P為拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q為圓x2+(y-7)2=1上的一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到y(tǒng)軸的距離之和的最小值是( 。
A.5$\sqrt{2}$-7B.5$\sqrt{2}$-2C.5$\sqrt{2}$-1D.5$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},則M∪N=( 。
A.{x|x≤3}B.{x|2<x<3}C.ND.R

查看答案和解析>>

同步練習(xí)冊(cè)答案