【題目】如圖,在正三棱柱ABCA1B1C1中,F,F1分別是AC,A1C1的中點(diǎn).

求證:(1)平面AB1F1∥平面C1BF;

(2)平面AB1F1⊥平面ACC1A1.

【答案】詳見解析

【解析】試題分析:1)先根據(jù)線線平行得線面平行,再根據(jù)線面平行得面面平行2)先證線面垂直:B1F1⊥平面ACC1A1,一根據(jù)正三角形性質(zhì)得B1F1A1C1,二根據(jù)正三棱柱性質(zhì)得B1F1AA1.最后根據(jù)面面垂直判定定理得結(jié)論

試題解析:(1)在正三棱柱ABCA1B1C1中,

F,F1分別是ACA1C1的中點(diǎn),

B1F1BF,AF1C1F.

B1F1AF1F1,C1FBFF

平面AB1F1平面C1BF.

(2)在正三棱柱ABCA1B1C1中,AA1平面A1B1C1,B1F1平面A1B1C1

B1F1AA1.

B1F1A1C1,A1C1AA1A1

B1F1平面ACC1A1,而B1F1平面AB1F1,

平面AB1F1平面ACC1A1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)C為圓心的圓經(jīng)過點(diǎn)A(1,0)B(3,4),且圓心在直線x3y150上.設(shè)點(diǎn)P在圓C上,求PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ;

(1)求函數(shù)上的解析式并畫出函數(shù)的圖象(不要求列表描點(diǎn),只要求畫出草圖)

(2)(。⿲懗龊瘮(shù)單調(diào)遞增區(qū)間;

(ⅱ)若方程上有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓軸的正半軸相交于點(diǎn),點(diǎn)為橢圓的焦點(diǎn),且是邊長為2的等邊三角形,若直線與橢圓交于不同的兩點(diǎn)

(1)直線的斜率之積是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由;

(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有4個(gè)不同的球,4個(gè)不同的盒子,把球全部放入盒子內(nèi).

(1)共有幾種放法?

(2)恰有1個(gè)空盒,有幾種放法?

(3)恰有2個(gè)盒子不放球,有幾種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.

(1)求復(fù)數(shù);

(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)判斷并證明函數(shù)上單調(diào)性;

(3)求函數(shù)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年夏季奧運(yùn)會(huì)將在巴西里約熱內(nèi)盧舉行,體育頻道為了解某地區(qū)關(guān)于

奧運(yùn)會(huì)直播的收視情況,隨機(jī)抽取了名觀眾進(jìn)行調(diào)查,其中歲以上的觀眾有名,下面是根據(jù)

調(diào)查結(jié)果繪制的觀眾準(zhǔn)備平均每天收看奧運(yùn)會(huì)直播時(shí)間的頻率分布表(時(shí)間:分鐘)

分組







頻率







將每天準(zhǔn)備收看奧運(yùn)會(huì)直播的時(shí)間不低于分鐘的觀眾稱為奧運(yùn)迷,已知奧運(yùn)迷中有

以上的觀眾.

1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有以上的把握認(rèn)為奧運(yùn)迷與年齡

有關(guān)?


奧運(yùn)迷

奧運(yùn)迷

合計(jì)

歲以下




歲以上




合計(jì)




2)將每天準(zhǔn)備收看奧運(yùn)會(huì)直播不低于分鐘的觀眾稱為超級(jí)奧運(yùn)迷,已知超級(jí)奧運(yùn)迷中有

歲以上的觀眾,若從超級(jí)奧運(yùn)迷中任意選取人,求至少有歲以上的觀眾的概率.

附:







查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對(duì)本企業(yè)900名員工的工作滿意度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女員工,14名男員工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);

(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為“滿意”,否則為“不滿意”,請(qǐng)完成下列表格:

“滿意”的人數(shù)

“不滿意”的人數(shù)

總計(jì)

16

14

總計(jì)

30

(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否有99%的把握認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?

查看答案和解析>>

同步練習(xí)冊(cè)答案