【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是線段AB的中點(diǎn).
(1)求證:C1M∥平面A1ADD1;
(2)若CD1垂直于平面ABCD且CD1= ,求平面C1D1M和平面ABCD所成的角(銳角)的余弦值.
【答案】
(1)解:連接AD1,∵ABCD﹣A1B1C1D1為四棱柱,∴CD C1D1,
又M為AB的中點(diǎn),∴AM=1.
∴CD∥AM,CD=AM,
∴AM C1D1,
∴AMC1D1為平行四邊形,∴AD1∥MC1,又MC1平面A1ADD1,AD1平面A1ADD1,
∴C1M∥平面A1ADD1;
(2)解:解法一:∵AB∥A1B1,A1B1∥C1D1,
∴面D1C1M與ABC1D1共面,
作CN⊥AB,連接D1N,則∠D1NC即為所求二面角,
在ABCD中,DC=1,AB=2,∠DAB=60°,
∴CN= ,
在Rt△D1CN中,CD1= ,CN= ,
∴D1N=
∴cos∠D1CN= = =
解法二:作CP⊥AB于P,以C為原點(diǎn),CD為x軸,CP為y軸,CD1為z軸建立空間坐標(biāo)系
則C1(﹣1,0, ),D1,(0,0, ),M( , ,0),
∴ =(1,0,0), =( , ,﹣ ),
設(shè)平面C1D1M的法向量 =(x1,y1,z1),
則 ,∴ =(0,2,1).
顯然平面ABCD的法向量 =(0,0,1),
cos< , >|= = = ,
顯然二面角為銳角,
∴平面C1D1M和平面ABCD所成的角(銳角)的余弦值為 .
【解析】(1)連接AD1 , 易證AMC1D1為平行四邊形,利用線面平行的判定定理即可證得C1M∥平面A1ADD1;(2)作CP⊥AB于P,以C為原點(diǎn),CD為x軸,CP為y軸,CD1為z軸建立空間坐標(biāo)系,易求C1(﹣1,0, ),D1 , (0,0, ),M( , ,0), =(1,1,0), =( , ,﹣ ),設(shè)平面C1D1M的法向量 =(x1 , y1 , z1),可求得 =(0,2,1),而平面ABCD的法向量 =(1,0,0),從而可求得平面C1D1M和平面ABCD所成的角(銳角)的余弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,,第五組,右圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )
A. 6 B. 8 C. 12 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù),函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),不等式恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線C由上半橢圓C1: =1(a>b>0,y≥0)和部分拋物線C2:y=﹣x2+1(y≤0)連接而成,C1與C2的公共點(diǎn)為A,B,其中C1的離心率為 .
(1)求a,b的值;
(2)過點(diǎn)B的直線l與C1 , C2分別交于點(diǎn)P,Q(均異于點(diǎn)A,B),若AP⊥AQ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,且f(x)=.
(1)求函數(shù)f(x)的解析式;最小正周期及單調(diào)遞增區(qū)間.
(2)當(dāng)時(shí),f(x)的最小值是-4,求此時(shí)函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)且時(shí),證明.
(2)令,若時(shí),恒成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙兩個(gè)項(xiàng)目,對甲項(xiàng)目每投資10萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為;已知乙項(xiàng)目的利潤與產(chǎn)品價(jià)格的調(diào)整有關(guān),在每次調(diào)整中,價(jià)格下降的概率都是p(0<p<1),設(shè)乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行兩次獨(dú)立的調(diào)整.記乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)的下降次數(shù)為X,對乙項(xiàng)目每投資10萬元,X取0、1、2時(shí),一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量X1、X2分別表示對甲、乙兩項(xiàng)目各投資10萬元一年后的利潤.
(1)求X1,X2的概率分布和均值E(X1),E(X2);
(2)當(dāng)E(X1)<E(X2)時(shí),求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的增函數(shù).當(dāng)實(shí)數(shù)取最大值時(shí),若存在點(diǎn),使得過點(diǎn)的直線與曲線圍成兩個(gè)封閉圖形,且這兩個(gè)封閉圖形的面積總相等,則點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線C: ﹣y2=1(a>0)的右焦點(diǎn)為F,點(diǎn)A,B分別在C的兩條漸近線AF⊥x軸,AB⊥OB,BF∥OA(O為坐標(biāo)原點(diǎn)).
(1)求雙曲線C的方程;
(2)過C上一點(diǎn)P(x0 , y0)(y0≠0)的直線l: ﹣y0y=1與直線AF相交于點(diǎn)M,與直線x= 相交于點(diǎn)N.證明:當(dāng)點(diǎn)P在C上移動(dòng)時(shí), 恒為定值,并求此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com