7.已知△ABC的外接圓半徑為1,角A,B,C的對應(yīng)邊分別為a,b,c,若sinB=acosC.,
(1)求$\frac{a}{c}$的值;
(2)若M為邊BC的中點(diǎn),$\overrightarrow{AM}•\overrightarrow{AC}=9{sin^2}A$,求角B的大。

分析 (1)由△ABC的外接圓半徑為1,及正弦定理得a=2RsinA=2sinA,⇒sinAcosC-cosAsinCsin(A-C)=0,即可得a=c,即可.
(2)由$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$得$\overrightarrow{AM}•\overrightarrow{AC}=9{sin^2}A$?$\frac{1}{2}{\overrightarrow{AC}}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AC}=9si{n}^{2}A$⇒$\frac{1}{2}^{2}+\frac{1}{2}×\frac{1}{2}^{2}=\frac{9{a}^{2}}{4}$⇒b=$\sqrt{3}a$,即可得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}=\frac{2{a}^{2}-3{a}^{2}}{2{a}^{2}}=-\frac{1}{2}$.

解答 解:(1)由△ABC的外接圓半徑為1,及正弦定理得a=2RsinA=2sinA,
∴sinB=acosC變形為:sin(A+C)=2sinAcosC
⇒sinAcosC-cosAsinC=0
sin(A-C)=0,∵A-C∈(-π,π),∴A-C=0,
∴a=c,∴$\frac{a}{c}$的值為1
(2)∵M(jìn)為邊BC的中點(diǎn),∴$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$
∴$\overrightarrow{AM}•\overrightarrow{AC}=9{sin^2}A$?$\frac{1}{2}{\overrightarrow{AC}}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AC}=9si{n}^{2}A$
又∵$sinA=\frac{a}{2R}=\frac{a}{2}$,a=c
∴$\frac{1}{2}{\overrightarrow{AC}}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AC}=9si{n}^{2}A$⇒$\frac{1}{2}^{2}+\frac{1}{2}×\frac{1}{2}^{2}=\frac{9{a}^{2}}{4}$⇒b=$\sqrt{3}a$
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}=\frac{2{a}^{2}-3{a}^{2}}{2{a}^{2}}=-\frac{1}{2}$,
∵B∈(0,π),∴角B的大小為$\frac{2π}{3}$.

點(diǎn)評 本題考查了正余弦定理的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.《九章算術(shù)》是我國古代一部重要的數(shù)學(xué)著作,書中有如下問題:“今有良馬與駑馬發(fā)長安,至齊.齊去長安三千里,良馬初日行一百九十三里,日增一十三里,駕馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬.何日相逢,”其大意為:“現(xiàn)在有良馬和駑馬同時從長安出發(fā)到齊去,已知長安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”現(xiàn)有三種說法:①駑馬第九日走了93里路;②良馬四日共走了930里路;③行駛5天后,良馬和駑馬相距615里.
那么,這3個說法里正確的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.用數(shù)學(xué)歸納法證明“1+a+a2+…+an=$\frac{1-{a}^{n+1}}{1-a}$,a≠1,n∈N*”,在驗(yàn)證n=1時,左邊是1+a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大;
(Ⅱ)若b=2,且sinB+sin(C-A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若命題“存在x0∈R,使x02+2x0+m≤0”是假命題,則實(shí)數(shù)m的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在極坐標(biāo)系中,曲線C1:ρsin2θ=4cosθ.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]),曲線C:$\left\{\begin{array}{l}{x={x}_{0}+\frac{1}{2}t}\\{y={y}_{0}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)C與C1相交于A,B,與C2相切于點(diǎn)Q,求|AQ|-|BQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)=|3x-2|+|x-2|.
(Ⅰ)解不等式f(x)=|3x-2|+|x-2|≤8;
(Ⅱ)對任意的x,f(x)≥(m2-m+2)•|x|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.B.$\frac{3π}{2}$C.$\frac{4π}{3}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.復(fù)數(shù)$\frac{1}{2+i}$的虛部是( 。
A.-$\frac{1}{5}$B.-$\frac{1}{5}$iC.$\frac{1}{5}$D.$\frac{1}{5}$i

查看答案和解析>>

同步練習(xí)冊答案