精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點(diǎn)D、E分別在棱PB、PC上,且DE∥BC.
(1)求證:BC⊥平面PAC;
(2)當(dāng)D為PB的中點(diǎn)時(shí),求AD與平面PAC所成的角的正弦值;
(3)是否存在點(diǎn)E使得二面角A-DE-P為直二面角?并說(shuō)明理由.
分析:(1)欲證BC⊥平面PAC,根據(jù)直線與平面垂直的判定定理可知只需證BC與平面PAC內(nèi)兩相交直線垂直,根據(jù)線面垂直的性質(zhì)可知PA⊥BC,而AC⊥BC,滿足定理所需條件;
(2)根據(jù)DE⊥平面PAC,垂足為點(diǎn)E,則∠DAE是AD與平面PAC所成的角.在Rt△ADE中,求出AD與平面PAC所成角即可;
(3)根據(jù)DE⊥AE,DE⊥PE,由二面角的平面角的定義可知∠AEP為二面角A-DE-P的平面角,而PA⊥AC,則在棱PC上存在一點(diǎn)E,使得AE⊥PC,從而存在點(diǎn)E使得二面角A-DE-P是直二面角.
解答:精英家教網(wǎng)解:(1)∵PA⊥底面ABC,∴PA⊥BC.
又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC.
(2)∵D為PB的中點(diǎn),DE∥BC,
∴DE=
1
2
BC.
又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足為點(diǎn)E,
∴∠DAE是AD與平面PAC所成的角.
∵PA⊥底面ABC,∴PA⊥AB.
又PA=AB,∴△ABP為等腰直角三角形,
∴AD=
1
2
AB.
在Rt△ABC中,∠ABC=60°,∴BC=
1
2
AB,
∴在Rt△ADE中,sin∠DAE=
DE
AD
=
BC
2AD
=
2
4

即AD與平面PAC所成角的正弦值為
2
4

(3)∵DE∥BC,又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC.
又∵AE?平面PAC,PE?平面PBC,
∴DE⊥AE,DE⊥PE,
∴∠AEP為二面角A-DE-P的平面角.
∵PA⊥底面ABC,∴PA⊥AC,
∴∠PAC=90°,∴在棱PC上存在一點(diǎn)E,使得AE⊥PC.
這時(shí),∠AEP=90°,
故存在點(diǎn)E使得二面角A-DE-P是直二面角.
點(diǎn)評(píng):考查線面所成角、線面垂直的判定定理以及二面角的求法,涉及到的知識(shí)點(diǎn)比較多,知識(shí)性技巧性都很強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實(shí)數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時(shí),tanθ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
(Ⅰ)求證:DE‖平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點(diǎn)繞三棱錐側(cè)面一圈回到點(diǎn)A的最短距離是
3
,則PA=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點(diǎn)D,E分別在棱
PB,PC上,且BC∥平面ADE
(I)求證:DE⊥平面PAC;
(Ⅱ)當(dāng)二面角A-DE-P為直二面角時(shí),求多面體ABCED與PAED的體積比.

查看答案和解析>>

同步練習(xí)冊(cè)答案