18.設(shè)函數(shù)f(x)=lnx+$\frac{m}{x}$,m∈R.
(I)當(dāng)m=1時(shí),求f(x)的極小值;
(Ⅱ)當(dāng)0<m<$\frac{2}{3}$時(shí),判斷函數(shù)g(x)=f′(x)-$\frac{x}{3}$零點(diǎn)的個(gè)數(shù);
(Ⅲ)若h(x)=f(x)-x在(0,+∞)上單凋遞減,求m的取值范圍.

分析 (Ⅰ)m=1時(shí),f(x)=lnx+$\frac{1}{x}$,利用f′(x)判定f(x)的增減性并求出f(x)的極小值;
(Ⅱ)由函數(shù)g(x)=f′(x)-$\frac{x}{3}$,令g(x)=0,求出m;設(shè)φ(x)=m,求出φ(x)的值域,討論m的取值,對(duì)應(yīng)g(x)的零點(diǎn)情況;
(Ⅲ)求出h(x)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為m≥x-x2在(0,+∞)恒成立,根據(jù)二次函數(shù)的性質(zhì)求出m的范圍即可.

解答 解:(Ⅰ)當(dāng)m=1時(shí),f(x)=lnx+$\frac{1}{x}$,
∴f′(x)=$\frac{x-1}{{x}^{2}}$;
∴當(dāng)x∈(0,1)時(shí),f′(x)<0,f(x)在(0,1)上是減函數(shù);
當(dāng)x∈(1,+∞)時(shí),f′(x)>0,f(x)在(1,+∞)上是增函數(shù);
∴x=1時(shí),f(x)取得極小值為f(1)=ln1+1=1;
(Ⅱ)∵函數(shù)g(x)=f′(x)-$\frac{x}{3}$=$\frac{1}{x}$-$\frac{m}{{x}^{2}}$-$\frac{x}{3}$(x>0),
令g(x)=0,得m=-$\frac{1}{3}$x3+x(x>0);
設(shè)φ(x)=-$\frac{1}{3}$x3+x(x>0),
∴φ′(x)=-x2+1=-(x-1)(x+1);
當(dāng)x∈(0,1)時(shí),φ′(x)>0,φ(x)在(0,1)上是增函數(shù),
當(dāng)x∈(1,+∞)時(shí),φ′(x)<0,φ(x)在(1,+∞)上是減函數(shù);
∴x=1是φ(x)的極值點(diǎn),且是極大值點(diǎn),
∴x=1是φ(x)的最大值點(diǎn),
∴φ(x)的最大值為φ(1)=$\frac{2}{3}$;
又φ(0)=0,結(jié)合y=φ(x)的圖象,如圖;
當(dāng)0<m<$\frac{2}{3}$時(shí),函數(shù)g(x)有兩個(gè)零點(diǎn);
(Ⅲ)h(x)=lnx+$\frac{m}{x}$-x,(x>0),
h′(x)=$\frac{x-m{-x}^{2}}{{x}^{2}}$,
若h(x)在(0,+∞)上單調(diào)遞減,
則x-m-x2≤0在(0,+∞)恒成立,
即m≥x-x2在(0,+∞)恒成立,
而y=x-x2在(0,+∞)的最大值是$\frac{1}{4}$,
∴m≥$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用問(wèn)題,解題時(shí)應(yīng)根據(jù)函數(shù)的導(dǎo)數(shù)判定函數(shù)的增減性以及求函數(shù)的極值和最值,應(yīng)用分類討論法,構(gòu)造函數(shù)等方法來(lái)解答問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題

如圖,四邊形為梯形,,求圖中陰影部分繞旋轉(zhuǎn)一周形成的幾何體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=4.
(Ⅰ)若點(diǎn)P為AA1的中點(diǎn),求證:平面B1CP⊥平面B1C1P;
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得二面角B1-CP-C1的大小為60°?若存在,求出|AP|的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD,BC=4,點(diǎn)M為PC中點(diǎn),點(diǎn)E為BC邊上的動(dòng)點(diǎn),且$\frac{BE}{EC}=λ$.
(Ⅰ)求證:DM∥平面PAB;  
(Ⅱ)求證:平面ADM⊥平面PBC;
(Ⅲ)是否存在實(shí)數(shù)λ,使得二面角P-DE-B的余弦值為$\frac{2}{3}$?若存在,試求出實(shí)數(shù)λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖:網(wǎng)格上的小正方形的邊長(zhǎng)為1,粗實(shí)線畫(huà)出的是某多面體的三視圖,則該多面體的各面面積中的最大值為( 。
A.16B.8C.2$\sqrt{13}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=πcosx-1在(-π,c)上為增函數(shù),則實(shí)數(shù)c的取值范圍是(-π,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某幾何體的三視圖如圖所示,圖中小方格的長(zhǎng)度為1,則該幾何體的體積為( 。
A.$\frac{8}{3}$B.4C.2D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=a(lnx-x)-3(a∈R,a≠0)的圖象在點(diǎn)(2,f(2))處的切線斜率為1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意t∈[0,1],函數(shù)g(x)=x3+x2($\frac{m}{2}$+f′(x))在區(qū)間(t,2)上總存在極值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.AB是⊙O的直徑,點(diǎn)C是⊙O上的動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)C的直線VC垂直于⊙O所在的平面,D,E分別是VA,VC的中點(diǎn).
(1)試判斷直線DE與平面VBC的位置關(guān)系,并說(shuō)明理由;
(2)若已知AB=VC=2,0<BC<1,求二面角C-VB-A的余弦值的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案