【題目】已知數(shù)列的前項(xiàng)和為,且

)求數(shù)列的通項(xiàng)公式;

)若數(shù)列滿足,求數(shù)列的通項(xiàng)公式;

)在()的條件下,設(shè),問是否存在實(shí)數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

【答案】;⑵.

【解析】

試題(1)由遞推關(guān)系式消去,可得,數(shù)列為等比數(shù)列,且首項(xiàng)為,公比,所以.(2)由遞推得:

兩式相減得:

當(dāng)時(shí),所以

(3) 因?yàn)?/span>

所以當(dāng)時(shí),

依據(jù)題意,有

分類討論,為奇數(shù)或偶數(shù),分離參數(shù)即可求出的取值范圍是

試題解析:⑴ 由兩式相減,得

所以由又

所以數(shù)列為等比數(shù)列,且首項(xiàng)為,公比,所以

⑵ 由 ⑴ 知

當(dāng)時(shí),所以

⑶ 因?yàn)?/span>

所以當(dāng)時(shí),

依據(jù)題意,有

①當(dāng)為大于或等于的偶數(shù)時(shí),有恒成立.

增大而增大,

則當(dāng)且僅當(dāng)時(shí),的取值范圍為

②當(dāng)為大于或等于的奇數(shù)時(shí),有恒成立,且僅當(dāng)時(shí),

的取值范圍為

又當(dāng)時(shí),由

綜上可得,所求的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求證:AA1⊥平面ABC;

(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),。

Ⅰ.求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

Ⅱ.當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

Ⅲ.將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi).

1)當(dāng)每輛車的月租金定為元時(shí),能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)以往的經(jīng)驗(yàn),某建筑工程施工期間的降水量單位: 對(duì)工期的影響如下表:

根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前20天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.

1根據(jù)降水量的折線圖,分別求該工程施工延誤天數(shù)的頻率;

2)以1中的頻率作為概率,求工期延誤天數(shù)的分布列及數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)準(zhǔn)備在今年的“五一假”期間對(duì)顧客舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了兩種抽獎(jiǎng)方案,方案的中獎(jiǎng)率為,中獎(jiǎng)可以獲得分;方案的中獎(jiǎng)率為,中獎(jiǎng)可以獲得分;未中獎(jiǎng)則不得分,每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,并憑分?jǐn)?shù)兌換獎(jiǎng)品,

1)若顧客甲選擇方案抽獎(jiǎng),顧客乙選擇方案抽獎(jiǎng),記他們的累計(jì)得分為,若的概率為,求

2)若顧客甲、顧客乙兩人都選擇方案或都選擇方案進(jìn)行抽獎(jiǎng),問:他們選擇何種方案抽獎(jiǎng),累計(jì)得分的均值較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銳角是第幾象限角?第一象限角一定是銳角嗎?再分別就直角、鈍角來回答這兩個(gè)問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個(gè)巨大的市場(chǎng).為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某大學(xué)的名學(xué)生進(jìn)行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

組別

頻數(shù)

(Ⅰ)求所得樣本的中位數(shù)(精確到百元);

(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在元以上;

(Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:若,則,

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上一動(dòng)點(diǎn),圓心關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)分別是線段上的點(diǎn),且.

(1)求點(diǎn)的軌跡方程;

(2)直線與點(diǎn)的軌跡只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于兩點(diǎn),求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案