已知偶函數(shù)y=f(x)(x∈R)滿足f(x)=f(2-x),且當(dāng)x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log7x的圖象的交點(diǎn)個(gè)數(shù)為
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意可得函數(shù)y=f(x)(x∈R)是以2為周期的周期函數(shù),然后在同一坐標(biāo)系中畫(huà)出函數(shù)y=f(x)與y=log7x的圖象,利用圖象法得到答案.
解答: 解:∵偶函數(shù)y=f(x)(x∈R)滿足f(x)=f(2-x),
∴f(x)=f(2-x)=f(x-2),
∴函數(shù)y=f(x)(x∈R)是以2為周期的周期函數(shù),
又∵當(dāng)x∈[-1,1]時(shí),f(x)=x2
故可以在同一坐標(biāo)系中畫(huà)出函數(shù)y=f(x)與函數(shù)y=log7x的圖象,如下圖所示:

結(jié)合圖象可得函數(shù)y=f(x)與y=log7x的圖象的交點(diǎn)個(gè)數(shù)為6
故答案為:6
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn),數(shù)形結(jié)合是解決問(wèn)題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知遞增數(shù)列{an}滿足2an+1=an+an+2(n∈N*)且a1+a2+a3=18,a1a2a3=192.
(1)求{an}的通項(xiàng)公式;
(2)若bn=man(m為常數(shù),m>0且m≠1),求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)在(2)的條件下,若cn=bn•lgbn且{cn}的每一項(xiàng)都小于它的后一項(xiàng),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x>0,y>0,求
x-y
(1+x)(1+y)+xy
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

t為何值時(shí),函數(shù)f( x)=-3x2+2x-t+1的圖象與x軸不相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2alnx(a∈R),
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=f(x)+2x,若g(x)在[1,2]上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=2cos2x+5sinx-4(
π
6
≤x≤
π
3
)的最大值和最小值,并寫(xiě)出取最值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+px+q滿足f(-2+x)=f(-2-x),其圖象經(jīng)過(guò)點(diǎn)(-4,0),求二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2x,若數(shù)列3,f(x1),f(x2),…,f(xm),3m+6(m∈N*)成等差數(shù)列.
(Ⅰ)求數(shù)列{f(xn)}(1≤n≤m,m,n∈N*)的通項(xiàng)公式;
(Ⅱ)求數(shù)列{xn}(1≤n≤m,m,n∈N*)的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線ax+by+a+b=0與圓x2+y2=2的位置關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案