18.某商家在網(wǎng)上銷售一種商品,從該商家的銷售數(shù)據(jù)中抽取6天的價格與銷量的對應(yīng)數(shù)據(jù),如下表所示:
價格x(百元)456789
銷量y(件/天)908483807568
(Ⅰ)由表中數(shù)據(jù),看出可用線性回歸模型擬合y與x的關(guān)系,試求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測當(dāng)價格為1000元時,每天的商品的銷量為多少;
(Ⅱ)若以從這6天中隨機抽取2天,至少有1天的價格高于700元的概率作為客戶A,B購買此商品的概率,而客戶C,D購買此商品的概率均為$\frac{1}{2}$,設(shè)這4位客戶中購買此商品的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):$\sum_{i=1}^{6}$xiyi=3050,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=271.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$.

分析 (Ⅰ)求出回歸系數(shù),可得y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測當(dāng)價格為1000元時,每天的商品的銷量為多少;
(Ⅱ)由題意可知:X=0,1,2,3,4.求出相應(yīng)的概率,可得X的分布列及數(shù)學(xué)期望.

解答 解:(Ⅰ)由題意,$\overline{x}$=6.5,$\overline{y}$=80,
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{3050-6×6.5×80}{271-6×6.{5}^{2}}$=-4,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$=80-(-4)×6.5=106,
∴$\stackrel{∧}{y}$=-4x+106,
x=10時,$\stackrel{∧}{y}$=-40+106+66,即預(yù)測當(dāng)價格為1000元時,每天的商品的銷量為66件;
(Ⅱ)從6天中隨機抽取2天的選法有${C}_{6}^{2}$=15種,
至少有1天的價格高于700元的選法有${C}_{4}^{1}{C}_{2}^{1}+{C}_{2}^{2}$=9種,∴概率為$\frac{9}{15}$=$\frac{3}{5}$.
由題意,X=0.1.2.3.4.
P(X=0)=(1-0.6)2×(1-0.5)2=0.04,
P(X=1)=${C}_{2}^{1}$×(1-0.6)×(1-0.5)2+${C}_{2}^{1}$×(1-0.6)2×0.5×(1-0.5)=0.2,
P(X=2)=${C}_{2}^{1}$×0.6×${C}_{2}^{1}$×0.5×(1-0.5)+0.62×(1-0.5)2+(1-0.6)2×0.52=0.37,
P(X=3)=${C}_{2}^{1}$×0.6×(1-0.6)×0.52+${C}_{2}^{1}$×0.62×0.5×(1-0.5)=0.3,
P(X=4)=0.62×0.52=0.09.
X的分布列

 X 0 1 2 3 4
 P0.040.2 0.370.30.09 
故E(X)=0×0.04+1×0.2+2×0.37+3×0.3+4×0.09=2.2.

點評 本題考查了獨立性檢驗知識的運用,考查分布列及數(shù)學(xué)期望,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,∠A=$\frac{π}{3}$,O為平面內(nèi)一點.且|$\overrightarrow{OA}|=|\overrightarrow{OB}|=|\overrightarrow{OC}$|,M為劣弧$\widehat{BC}$上一動點,且$\overrightarrow{OM}=p\overrightarrow{OB}+q\overrightarrow{OC}$.則p+q的取值范圍為[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若變量x,y滿足$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+3≥0}\\{x≥1}\end{array}\right.$,目標(biāo)函數(shù)z=2ax+by(a>0,b>0)取得最大值的是6,則$\frac{1}{a}+\frac{2}$的最小值為7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$•sin(cosx)的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象過點B(0,-1),且在($\frac{π}{18}$,$\frac{π}{3}$)上單調(diào),同時f(x)的圖象向左平移π個單位之后與原來的圖象重合,當(dāng)x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),且x1≠x2時,f(x1)=f(x2),則f(x1+x2)=( 。
A.-$\sqrt{3}$B.-1C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知單位向量$\overrightarrow a$,$\overrightarrow b$,滿足$\overrightarrow a⊥({\overrightarrow a+2\overrightarrow b})$,則$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知A、B為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右頂點,F(xiàn)1,F(xiàn)2為其左右焦點,雙曲線的漸近線上一點P(x0,y0)(x0<0,y0>0),滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,且∠PBF1=45°,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow{AB}$=(6,1),$\overrightarrow{CD}$=(x,-3),若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則x=-18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在正四面體ABCD中,O是△BCD的中心,E,F(xiàn)分別是AB,AC上的動點,且$\overrightarrow{BE}$=λ$\overrightarrow{BA}$,$\overrightarrow{CF}$=(1-λ)$\overrightarrow{CA}$
(1)若OE∥平面ACD,求實數(shù)λ的值;
(2)若λ=$\frac{1}{2}$,正四面體ABCD的棱長為2$\sqrt{2}$,求平面DEF和平面BCD所成的角余弦值.

查看答案和解析>>

同步練習(xí)冊答案