17.已知△ABC中,a=1,b=$\sqrt{2}$,B=45°,則銳角A等于(  )
A.30°B.45°C.60°或 30°D.60°

分析 由$\frac{a}{sinA}=\frac{sinB}$,得sinA=$\frac{asinB}$,由此能求出銳角A.

解答 解:∵△ABC中,a=1,b=$\sqrt{2}$,B=45°,
∴$\frac{a}{sinA}=\frac{sinB}$,
∴sinA=$\frac{asinB}$=$\frac{1×sin45°}{\sqrt{2}}$=$\frac{1}{2}$,
∴銳角A=30°.
故選:A.

點(diǎn)評 本題考查角的大小的求法,考查正弦定理等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.為了得到函數(shù)y=sin2xcos$\frac{π}{3}$+cos2xsin$\frac{π}{3}$(x∈R)的圖象,只需將y=sin2x(x∈R)的圖象上所有的點(diǎn)( 。
A.向右平移$\frac{π}{6}$個(gè)單位長度B.向左平移$\frac{π}{6}$個(gè)單位長度
C.向右平移$\frac{π}{3}$個(gè)單位長度D.向左平移$\frac{π}{3}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sinx=$\frac{\sqrt{2}}{2}$,當(dāng)x∈[0,2π]時(shí),求角x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow m=({sinA,cosA}),\overrightarrow n=({\sqrt{3},-1}),\overrightarrow m•\overrightarrow n=1$,且A為銳角
(1)求角A的大;
(2)求函數(shù)f(x)=cos2x+4cosAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.有一對夫妻有兩個(gè)孩子,已知其中一個(gè)是男孩,則另一個(gè)是女孩的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.集合A={x|x+3≥2},B={x|-3<x<3且x∈Z},則A∩B=( 。
A.[0,1,2,3}B.{-1,0,1,2}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若a>b>c,a+b+c=0,則下列不等式一定成立的是( 。
A.a-b>b-cB.ab>acC.ab>bcD.a2>c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,S9=81
(Ⅰ)求{an}的通項(xiàng)公式
(Ⅱ)求$\frac{1}{{S}_{1}+1}$$+\frac{1}{{S}_{2}+2}$+…$+\frac{1}{{S}_{2017}+2017}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)有下面四個(gè)命題
p1:若復(fù)數(shù)z滿足$\frac{1}{z}$∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1,z2滿足z1z2∈R,則z1=$\overline{z_2}$;
p4:若復(fù)數(shù)z∈R,則$\overline{z}$∈R.
其中的真命題為( 。
A.p2,p3B.p2,p4C.p1,p3D.p1,p4

查看答案和解析>>

同步練習(xí)冊答案