圓的方程為(x-1)2+(y-2)2=4,該圓圓心到直線y=x-2的距離為(  )
A、
6
2
B、
3
6
2
C、
2
2
D、
3
2
2
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:求出圓心和半徑,利用點到直線的距離公式求得圓心到直線的距離.
解答: 解:∵圓的方程為(x-1)2+(y-2)2=4,故圓心坐標(biāo)為(1,2),
把直線化為一般式方程為 x-y-2=0,
故圓心到直線的距離為
|1-2-2|
1+1
=
3
2
2
,
故選:D.
點評:本題主要考查圓的標(biāo)準(zhǔn)方程、把直線方程化為一般式方程,以及點到直線的距離公式的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=
x
和直線x=1,y=0所圍成的圖形的面積等于( 。
A、
1
2
B、
2
3
C、
1
3
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合P={x|3<x≤13},非空集合Q={x|a+1≤x<2a-5},
(1)若a=10,求P∩Q;(∁RP)∩Q;
(2)若P∩Q=Q,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=1.270. 2,b=log30.9,c=log32,則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、c>a>b
C、b>a>c
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
ax2-3ax+a+5
的定義域為R,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是指數(shù)函數(shù)①y=ax②y=bx③y=cx④y=dx的圖象,則a,b,c,d與1的大小關(guān)系是(  )
A、c<d<1<a<b
B、d<c<1<b<a
C、c<d<1<b<a
D、1<c<d<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x2+2x-3>0;命題q:x>a,且¬q的一個充分不必要條件是¬p,則a的取值范圍是(  )
A、(-∞,1]
B、[1,+∞)
C、[-1,+∞)
D、(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,P、O分別是AD1、AC中點.
(1)求證:PO∥平面CC1D1D     
(2)求證:AD⊥PO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是
 
(寫序號)
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x;
②函數(shù) f(x)=cos2ax-sin2ax的最小正周期為“π”是“a=1”的必要不充分條件;
③x2+2x≥ax 在x∈[1,2]上恒成立?(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④”平面向量
a
b
的夾角是鈍角“的充分必要條件是“
a
b
<0”

查看答案和解析>>

同步練習(xí)冊答案