設(shè)全集為R,集合P={x|3<x≤13},非空集合Q={x|a+1≤x<2a-5},
(1)若a=10,求P∩Q;(∁RP)∩Q;
(2)若P∩Q=Q,求實(shí)數(shù)a的取值范圍.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算,集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:(1)把a(bǔ)的值代入求出集合Q,再由交集、補(bǔ)集的運(yùn)算求出P∩Q,(∁RP)∩Q;
(2)由P∩Q=Q得Q⊆P,由題意得Q≠∅,再由子集的定義列出不等式組,求出a的范圍.
解答: 解:(1)當(dāng)a=10時(shí),Q={x|11≤x<15},
又集合P={x|3<x≤13},
所以P∩Q={x|3<x≤13}∩{x|11≤x<15}={x|11≤x≤13},
RP={x|x≤3或x>13},
則(∁RP)∩Q={x|13<x<15};
(2)由P∩Q=Q得,Q⊆P,且Q≠∅,
a+1<2a-5
a+1>3
2a-5≤13
,解得6<a≤9,
即實(shí)數(shù)a的取值范圍是(6,9].
點(diǎn)評(píng):本題考查交、并、補(bǔ)集的混合運(yùn)算,以及子集的定義的應(yīng)用,注意端點(diǎn)的取值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)對(duì)x>0有意義,當(dāng)m,n∈(0,+∞)時(shí),恒有f(mn)=f(m)+f(n)成立,并且f(2)=1,當(dāng)x>1時(shí),f(x)>0.
(1)求證:f(1)=0;
(2)求f(4)的值;
(3)求證:f(x)在(0,+∞) 上為增函數(shù);
(4)求滿足f(x)+f(
x-3
x
)<2的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)在區(qū)間(-∞,0)上為增函數(shù)的是( 。
A、y=1
B、y=-
1
x
+2
C、y=-x2-2x-1
D、y=1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
2
1-x
,若x1∈(1,2),x2∈(2,+∞),則( 。
A、f(x1)<0,f(x2)<0
B、f(x1)<0,f(x2)>0
C、f(x1)>0,f(x2)<0
D、f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,則該程序運(yùn)行后輸出的k值是( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg(
1+x2
-x)則( 。
A、f(x)是定義域?yàn)椋?1,1)的偶函數(shù)
B、f(x)是定義域?yàn)镽的偶函數(shù)
C、f(x)是定義域?yàn)椋?1,1)的奇函數(shù)
D、f(x)是定義域?yàn)镽的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組中的函數(shù)f(x)與g(x)相同的是(  )
A、f(x)=|x|,g(x)=(
x
 )2
B、f(x)=
x2
,g(x)=x
C、f(x)=
x2-1
x+1
,g(x)=x-1
D、f(x)=x0,g(x)=
x
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓的方程為(x-1)2+(y-2)2=4,該圓圓心到直線y=x-2的距離為( 。
A、
6
2
B、
3
6
2
C、
2
2
D、
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是雙曲線
x2
3
-
y2
4
=1實(shí)軸所在的直線,拋物線的焦點(diǎn)到頂點(diǎn)的距離等于雙曲線虛軸的長(zhǎng),求拋物線的方程和準(zhǔn)線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案