【題目】如圖,四棱錐S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求證:SA⊥BD;
(2)若∠BCD=120°,M為棱SA的中點(diǎn),求證:DM∥平面SBC.
【答案】
(1)如圖示:
證明:設(shè)BD中點(diǎn)為O,連接OC,OE,則由BC=CD知,CO⊥BD,
又已知SC⊥BD,SC⊥CO=C,所以BD⊥平面SOC,
∵△ABD是正三角形,∴AO是BD的中垂線,
故A、O、C在同一直線上,
故平面SAC即平面SOC,
由BD⊥OC,BD⊥SC,得BD⊥平面SAC,
故SA⊥BD
(2)證明:取AB中點(diǎn)N,連接DM,MN,DN,
∵M(jìn)是SA的中點(diǎn),∴MN∥BE,
∵△ABD是正三解形,∴DN⊥AB,
∵∠BCD=120°得∠CBD=30°,∴∠ABC=90°,即BC⊥AB,
所以ND∥BC,所以平面MND∥平面BSC,
故DM∥平面SBC.
【解析】(1)根據(jù)線面垂直以及線段的垂直平分線的性質(zhì)證明即可;(2)由線線平行到面面平行從而推出線面平行即可.
【考點(diǎn)精析】利用直線與平面平行的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖C,D是以AB為直徑的圓上的兩點(diǎn),,F是AB上的一點(diǎn),且,將圓沿AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知
(1)求證:AD平面BCE
(2)求證:AD//平面CEF;
(3)求三棱錐A-CFD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是( )
A.x∈R,f(x)≤f(x0)
B.x∈R,f(x)≥f(x0)
C.x∈R,f(x)≤f(x0)
D.x∈R,f(x)≥f(x0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足(1﹣a1008)5+2016(1﹣a1008)=1,(1﹣a1009)5+2016(1﹣a1009)=﹣1,數(shù)列{an}的前n項(xiàng)和記為Sn , 則( )
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2(1+2sin2θ)=3.
(Ⅰ)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)直線C1與曲線C2相交于A,B兩點(diǎn),點(diǎn)M(1,0),求||MA|﹣|MB||.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生會(huì)為了調(diào)查學(xué)生對(duì)2018年俄羅斯世界杯的關(guān)注是否與性別有關(guān),抽樣調(diào)查100人,得到如下數(shù)據(jù):
不關(guān)注 | 關(guān)注 | 總計(jì) | |
男生 | 30 | 15 | 45 |
女生 | 45 | 10 | 55 |
總計(jì) | 75 | 25 | 100 |
根據(jù)表中數(shù)據(jù),通過(guò)計(jì)算統(tǒng)計(jì)量K2= ,并參考一下臨界數(shù)據(jù):
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
若由此認(rèn)為“學(xué)生對(duì)2018年俄羅斯年世界杯的關(guān)注與性別有關(guān)”,則此結(jié)論出錯(cuò)的概率不超過(guò)( )
A.0.10
B.0.05
C.0.025
D.0.01
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù).
(1)若函數(shù), 的最小值為-16,求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),不等式的解集為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與圓
(1)若直線與圓相交于兩個(gè)不同點(diǎn),求的最小值;
(2)直線上是否存在點(diǎn),滿足經(jīng)過(guò)點(diǎn)有無(wú)數(shù)對(duì)互相垂直的直線和,它們分別與圓和圓相交,并且直線被圓所截得的弦長(zhǎng)等于直線被圓所截得的弦長(zhǎng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且f'(x)<f(x)對(duì)任意的x∈R恒成立,則下列不等式均成立的是( )
A.f(ln2)<2f(0),f(2)<e2f(0)
B.f(ln2)>2f(0),f(2)>e2f(0)
C.f(ln2)<2f(0),f(2)>e2f(0)
D.f(ln2)>2f(0),f(2)<e2f(0)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com