在空間直角坐標(biāo)系中,已知兩點(diǎn)A(1,-3,4),B(-3,2,0),則線段AB的中點(diǎn)坐標(biāo)為( 。
A、(-1,-
1
2
,2)
B、(-2,-1,4)
C、(2,-
5
2
,2)
D、(-2,-3,2)
考點(diǎn):空間中的點(diǎn)的坐標(biāo)
專題:空間位置關(guān)系與距離
分析:直接利用空間中點(diǎn)坐標(biāo)公式求解即可.
解答: 解:在空間直角坐標(biāo)系中,已知兩點(diǎn)A(1,-3,4),B(-3,2,0),則線段AB的中點(diǎn)坐標(biāo)為:(-1,-
1
2
,2).
故選:A.
點(diǎn)評(píng):本題考查空間兩點(diǎn)間的中點(diǎn)坐標(biāo)公式的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,an+1=2Sn+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的各項(xiàng)均為正數(shù),且bn
n
an
n
an+2
的等比中項(xiàng),求bn的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asinwx+Bcoswx(其中A、B、w是常數(shù)w>0)的最小周期為2,并且當(dāng)x=
1
3
取得最大值2.
(1)求函數(shù)f(x)的表達(dá)式
(2)在閉區(qū)間[
21
4
23
4
]上是否存在f(x)對(duì)稱軸,如果存在,求出其對(duì)稱軸方程;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

銀川唐徠回民中學(xué)高二年級(jí)某同學(xué)從家到學(xué)校騎自行車往返的時(shí)速分別為a和b(a<b),其全程的平均時(shí)速為u,則( 。
A、a<u<
ab
B、u=
a+b
2
C、
ab
<u<
a+b
2
D、u=
ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是數(shù)列{an}的前n項(xiàng)和且n∈N+,所有項(xiàng)an>0,且Sn=
1
4
a
2
n
+
1
2
an-
3
4

(1)證明:{an}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=loga(x-1)+1(a>0且a≠1)的圖象必經(jīng)過(guò)點(diǎn)( 。
A、(0,1)
B、(1,0)
C、(2,1)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在邊長(zhǎng)為5+
2
的正方形ABCD中,以A為圓心畫一個(gè)扇形,以O(shè)為圓心畫一個(gè)圓,M、N,K為切點(diǎn),以扇形為圓錐的側(cè)面,以圓O為圓錐底面,圍成一個(gè)圓錐,則圓錐的全面積與體積分別是
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)算法的程序框圖如下圖所示,若該程序輸出的結(jié)果為
5
6
,則判斷框中應(yīng)填入的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一條直線的傾斜角范圍是[0,
π
3
]∪[
4
,π),則這條直線的斜率范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案