一個算法的程序框圖如下圖所示,若該程序輸出的結(jié)果為
5
6
,則判斷框中應(yīng)填入的條件是
 

考點:循環(huán)結(jié)構(gòu)
專題:
分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出變量S的值,要確定進(jìn)入循環(huán)的條件,可模擬程序的運行,用表格對程序運行過程中各變量的值進(jìn)行分析,不難得到題目要求的結(jié)果.
解答: 解:開始,i=1,sum=0滿足條件;
第一次循環(huán)sum=0+
1
1×2
=
1
2
,i=2;滿足條件;
第二次循環(huán)sum=
1
2
+
1
2×3
=
4
6
,i=3;滿足條件;
第三次循環(huán)sum=
4
6
+
1
3×4
=
3
4
,i=4;滿足條件;
第四次循環(huán)sum=
3
4
+
1
4×5
=
4
5
,i=5;滿足條件;
第五次循環(huán)sum=
4
5
+
1
5×6
=
5
6
,i=6;不滿足條件;
∴判斷框中應(yīng)填入的條件是i<6
故答案為:i<6.
點評:本題考查解決程序框圖中的循環(huán)結(jié)構(gòu)時常采用寫出前幾次循環(huán)的結(jié)果找規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=12x的焦點為(  )
A、(6,0)
B、(0,6)
C、(3,0)
D、(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,已知兩點A(1,-3,4),B(-3,2,0),則線段AB的中點坐標(biāo)為( 。
A、(-1,-
1
2
,2)
B、(-2,-1,4)
C、(2,-
5
2
,2)
D、(-2,-3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
f(x+3),x≤0
,則f(-4)的值是( 。
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我國的《洛書》中記載著世界上最古老的一個幻方:將1,2,…,9填入3×3的方格內(nèi),使三行、三列、二對角線的三個數(shù)之和都等于15,如圖所示,一般地,將連續(xù)的正整數(shù)1,2,3,…,n2填入n×n個方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方,記n階幻方的對角線上數(shù)的和為N,如圖的幻方記為N3=15,那么N12的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2
(1)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,且a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的極小值;
(3)設(shè)F(x)=2f(x)-3x2-k(k∈R),若函數(shù)F(x)存在兩個零點m,n(0<m<n),且滿足2x0=m+n,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為迎接省運會在我市召開,美化城市,在某主干道上布置系列大型花盆,該圓形花盆直徑2米,內(nèi)部劃分為不同區(qū)域種植不同花草.如圖所示,在蝶形區(qū)域內(nèi)種植百日紅,該蝶形區(qū)域由四個對稱的全等三角形組成,其中一個三角形OAB的頂點O為圓心,A在圓周上,B在半徑OQ上,設(shè)計要求∠ABO=120°.
(1)請設(shè)置一個變量x,寫出該蝶形區(qū)域的面積S關(guān)于x的函數(shù)表達(dá)式;
(2)x為多少時,該蝶形區(qū)域面積S最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),若x∈[
1
2
,1]時,不等式f(1+xlog2a)≤f(x-2)恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求值:0.064-
1
3
-(-
1
2014
)
0
+16
1
4
+0.25
1
2
;
(2)計算
lg
27
+lg8-lg
1000
lg1.2

查看答案和解析>>

同步練習(xí)冊答案