已知f(x)=xln x,g(x)=x3+ax2-x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)對一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求實數(shù)a的取值范圍.
(1)f(x)的遞減區(qū)間是,遞增區(qū)間為(2)f(x)min=(3)[-2,+∞)
【解析】(1)f(x)的定義域為(0,+∞),
f′(x)=ln x+1,
令f′(x)<0,得0<x<;
令f′(x)>0,得x>.
∴f(x)的遞減區(qū)間是,遞增區(qū)間為.
(2)(ⅰ)當(dāng)0<t<t+2<時,無解.
(ⅱ)當(dāng)0<t<<t+2,即0<t<,
由(1)知,f(x)min=f=-.
(ⅲ)當(dāng)≤t<t+2,即t≥時,
f(x)在區(qū)間[t,t+2]上遞增,f(x)min=f(t)=tln t.
因此f(x)min=
(3)2f(x)<g′(x)+2,得2xln x≤3x2+2ax+1.
∵x>0,∴a≥ln x-x-.設(shè)h(x)=ln x-x-,
則h′(x)=-+=-.?
令h′(x)=0,得x=1,x=- (舍).
當(dāng)0<x<1時,h′(x)>0,h(x)在(0,1)上單調(diào)遞增;
當(dāng)x>1時,h′(x)<0,h(x)在(1,+∞)上單調(diào)遞減.
∴當(dāng)x=1時,h(x)取得最大值h(x)max=-2.
∴a≥-2.
∴a的取值范圍是[-2,+∞).
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-2橢圓、雙曲線、拋物線練習(xí)卷(解析版) 題型:選擇題
已知雙曲線的右焦點為(3,0),則該雙曲線的離心率等于( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-1等差數(shù)列與等比數(shù)列練習(xí)卷(解析版) 題型:解答題
在等差數(shù)列{an}中,a16+a17+a18=a9=-36,其前n項和為Sn.
(1)求Sn的最小值,并求出Sn取最小值時n的值;
(2)求Tn=|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-2解三角形練習(xí)卷(解析版) 題型:選擇題
在銳角△ABC中,BC=1,B=2A,則AC的取值范圍是( ).
A.[-2,2] B.[0,2] C.(0,2] D.(,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-1三角函數(shù)與三角恒等變換練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,-<φ<),其部分圖象如圖所示,將f(x)的圖象縱坐標(biāo)不變,橫坐標(biāo)變成原來的2倍,再向左平移1個單位得到g(x)的圖象,則函數(shù)g(x)的解析式為( ).
A.g(x)=sin (x+1) B.g(x)=sin(x+1)
C.g(x)=sin D.g(x)=sin
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-2導(dǎo)數(shù)及其應(yīng)用練習(xí)卷(解析版) 題型:選擇題
設(shè)f(x)在R上可導(dǎo),其導(dǎo)數(shù)為f′(x),給出下列四組條件:
①p:f(x)是奇函數(shù),q:f′(x)是偶函數(shù);
②p:f(x)是以T為周期的函數(shù),q:f′(x)是以T為周期的函數(shù);
③p:f(x)在區(qū)間(-∞,+∞)上為增函數(shù),q:f′(x)>0在(-∞,+∞)恒成立;
④p:f(x)在x0處取得極值,q:f′(x0)=0.
由以上條件中,能使p⇒q成立的序號為 ( ).
A.①②③ B.①②④ C.①③④ D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=的圖象如圖,則m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=-2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>-1,且當(dāng)x∈時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-3練習(xí)卷(解析版) 題型:解答題
為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h),試驗的觀測結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B藥的20位患者日平均增加的睡眠時間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪種藥的療效更好?
(2)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com