1.若復(fù)數(shù)z=$\frac{1+i}{1-i}$,$\overline{z}$為z的共軛復(fù)數(shù),則($\overline{z}$)2017=-i.

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由虛數(shù)單位i的性質(zhì)求解.

解答 解:∵z=$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{2}=i$,
∴$\overline{z}=-i$,
∴($\overline{z}$)2017=(-i)2017=-i.
故答案為:-i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,有下列命題:
①若m,n平行于同一平面,則m與n平行;
②若m⊥α,n∥α,則m⊥n;
③若α,β不平行,則在α內(nèi)不存在與β平行的直線;
④若α∩β=n,m∥n,則m∥α且m∥β;
⑤若m∥n,α∥β,則m與α所成角等于n與β所成角.
其中真命題有②⑤.(填寫(xiě)所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=sinx•sin({x+\frac{π}{6}})$.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a、b、c,且$f(A)=\frac{{\sqrt{3}}}{4},a=2$,求△ABC的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.等腰△ABC的底邊$AB=6\sqrt{6}$,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B,D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
(Ⅰ)證明EF⊥平面PAE;
(Ⅱ)記BE=x,V(x)表示四棱錐P-ACFE的體積,求V(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.直線y=4x與曲線y=4x2在第一象限圍成的封閉圖形的圖形的面積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=2lnx+x2-2ax(a>0).
(Ⅰ)若函數(shù)f(x)在區(qū)間[1,2]上的最小值為0,求實(shí)數(shù)a的值;
(Ⅱ)若x1,x2(x1<x2)是函數(shù)f(x)的兩個(gè)極值點(diǎn),且f(x1)-f(x2)>m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知x,y是實(shí)數(shù),i是虛數(shù)單位,$\frac{x}{1+i}=1-yi$,則復(fù)數(shù)x+yi在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于直線y=x對(duì)稱,z1=1+2i,則$\frac{z_1}{z_2}$=( 。
A.$\frac{3}{5}-\frac{4}{5}i$B.$\frac{3}{5}+\frac{4}{5}i$C.$\frac{4}{5}-\frac{3}{5}i$D.$\frac{4}{5}+\frac{3}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.對(duì)于n個(gè)向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$,若存在n個(gè)不全為0的示數(shù)k1,k2,k3,…,kn,使得:k1$\overrightarrow{{a}_{1}}$+k2$\overrightarrow{{a}_{2}}$+k3$\overrightarrow{{a}_{3}}$+…+kn$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$成立;則稱向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是線性相關(guān)的,按此規(guī)定,能使向量$\overrightarrow{{a}_{1}}$=(1,0),$\overrightarrow{{a}_{2}}$=(1,-1),$\overrightarrow{{a}_{3}}$=(2,2)線性相關(guān)的實(shí)數(shù)k1,k2,k3,則k1+4k3的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案