分析 (1)設(shè)切線l的方程為x=λy+6,由點(diǎn)到直線的距離公式得$\frac{|3-2λk-6|}{{\sqrt{1+{λ^2}}}}=3$,解得λ=$\frac{12}{5}$或λ=0,即可求過(guò)點(diǎn)P且與圓C相切的直線方程l;
(2)設(shè)圓心M(6,b),則半徑r=|b|,要使圓M與圓C外切,則須有:|MC|=3+|b|,求出b,即可求圓M的方程.
解答 (1)解:圓C化為標(biāo)準(zhǔn)方程是(x-3)2+(y-2)2=9…(1分)
故圓心坐標(biāo)為C(3,2)半徑r=3.
設(shè)切線l的方程為x=λy+6…(2分)
即x-λy-6=0,由點(diǎn)到直線的距離公式得$\frac{|3-2λk-6|}{{\sqrt{1+{λ^2}}}}=3$,解得λ=$\frac{12}{5}$或λ=0.
所以切線l的方程為 5x-12y-30=0或x=6…(5分)
(2)設(shè)圓心M(6,b),則半徑r=|b|
∴要使圓M與圓C外切,則須有:|MC|=3+|b|…(8分)
∴$\sqrt{{{(6-3)}^2}+{{(b-2)}^2}}=|b|+3$化簡(jiǎn)得4b+6|b|=4解得$b=\frac{2}{5}$或b=-2
所以圓M的方程為${(x-6)^2}+{(y-\frac{2}{5})^2}=\frac{4}{25}$或(x-6)2+(y+2)2=4.…(10分)
點(diǎn)評(píng) 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查點(diǎn)到直線距離公式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個(gè)單位 | B. | 向右平移$\frac{π}{6}$個(gè)單位 | ||
C. | 向左平移$\frac{1}{6}$個(gè)單位 | D. | 向右平移$\frac{1}{6}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a∥c | B. | a,c是異面直線 | ||
C. | a,c相交 | D. | a,c的位置關(guān)系不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,+∞) | B. | [-2,2] | C. | (-∞,-2] | D. | [-$\frac{5}{2}$,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com