17.在(2x-1)8的展開式中,含x2的項(xiàng)的系數(shù)是112(用數(shù)字填寫答案)

分析 利用通項(xiàng)公式即可得出.

解答 解:(2x-1)8的展開式中,通項(xiàng)公式Tr+1=${∁}_{8}^{r}$(2x)8-r(-1)r=(-1)r28-r${∁}_{8}^{r}$x8-r
令8-r=2,解得r=6.
∴含x2的項(xiàng)的系數(shù)是$(-1)^{2}{2}^{2}{∁}_{8}^{6}$=112.
故答案為:112.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)無論K為何值時(shí),直線(k+2)x+(1-k)y-4k-5=0都恒過定點(diǎn)P.求P點(diǎn)的坐標(biāo).
(2)證明:直線(k+2)x+(1-k)y-4k-5=0恒過第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{(x+1)(x+a)}{x}$為奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)利用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={x|x+2=0},B={-2,2},則A∩B=(  )
A.{-2}B.{2}C.{-2,2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在等腰直角三角形ABC的斜邊AB上任取一點(diǎn)M.求使AM<AC的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C:x2+y2-6x-4y+4=0,點(diǎn)P(6,0).
(1)求過點(diǎn)P且與圓C相切的直線方程l;
(2)若圓M與圓C外切,且與x軸切于點(diǎn)P,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,AB=5,AC=7,∠A=60°,G是重心,過G的平面α與BC平行,AB∩α=M,AC∩α=N,則MN=(  )
A.$\frac{8}{3}$B.$\frac{3}{8}$C.$\frac{4}{3}$D.$\frac{{2\sqrt{39}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$),$\overrightarrow$=(1,$\sqrt{3}$),$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow$,若$\overrightarrow{x}$與$\overrightarrow{y}$垂直,則k可用t的表達(dá)式表示為k=4t(t2-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知復(fù)數(shù)z1=1-i,z2=1+i,則$\frac{{{z_1}•{z_2}}}{i}$的虛部為-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案