【題目】在等差數(shù)列中,,.令,數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)是否存在正整數(shù),(),使得,,成等比數(shù)列?若存在,求出所有的,的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2);(3)存在,
【解析】
(1)根據(jù)等差數(shù)列的通項(xiàng)公式求得首項(xiàng)的值,則易求數(shù)列的通項(xiàng)公式;
(2)利用裂項(xiàng)法求得數(shù)列的通項(xiàng)公式,則易求得;
(3)假設(shè)存在正整數(shù),使得成等比數(shù)列,結(jié)合等比數(shù)列的性質(zhì)得到,從而求得符合條件的的值.
(1)設(shè)數(shù)列的公差為,由得,
解得,
(2),
.
(3)由(2)知,,,,
假設(shè)存在正整數(shù)、 ,使得、、成等比數(shù)列,
則 , 即 ,經(jīng)化簡(jiǎn),得
, (*)
當(dāng)時(shí),(*)式可化為 ,所以
當(dāng)時(shí),
又,(*)式可化為 ,所以此時(shí)無(wú)正整數(shù)解.
綜上可知,存在滿(mǎn)足條件的正整數(shù)、,此時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某企業(yè)有職工5000人,其中男職工3500人,女職工1500人.該企業(yè)為了豐富職工的業(yè)余生活,決定新建職工活動(dòng)中心,為此,該企業(yè)工會(huì)采用分層抽樣的方法,隨機(jī)抽取了300名職工每周的平均運(yùn)動(dòng)時(shí)間(單位:h),匯總得到頻率分布表(如表所示),并據(jù)此來(lái)估計(jì)該企業(yè)職工每周的運(yùn)動(dòng)時(shí)間:
平均運(yùn)動(dòng)時(shí)間 | 頻數(shù) | 頻率 |
[0,2) | 15 | 0.05 |
[2,4) | m | 0.2 |
[4,6) | 45 | 0.15 |
[6,8) | 755 | 0.25 |
[8,10) | 90 | 0.3 |
[10,12) | p | n |
合計(jì) | 300 | 1 |
(1)求抽取的女職工的人數(shù);
(2)①根據(jù)頻率分布表,求出m、n、p的值,完成如圖所示的頻率分布直方圖,并估計(jì)該企業(yè)職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h的概率;
男職工 | 女職工 | 總計(jì) | |
平均運(yùn)動(dòng)時(shí)間低于4h | |||
平均運(yùn)動(dòng)時(shí)間不低于4h | |||
總計(jì) |
②若在樣本數(shù)據(jù)中,有60名女職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h,請(qǐng)完成以下2×2列聯(lián)表,并判斷是否有95%以上的把握認(rèn)為“該企業(yè)職工毎周的平均運(yùn)動(dòng)時(shí)間不低于4h與性別有關(guān)”.
附:K2=,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的焦距為,點(diǎn)在橢圓上,且的最小值是(為坐標(biāo)原點(diǎn)).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)已知?jiǎng)又本(xiàn)與圓:相切,且與橢圓交于,兩點(diǎn).是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,是由直線(xiàn)引出的三個(gè)不重合的半平面,其中二面角大小為60°,在二面角內(nèi)繞直線(xiàn)旋轉(zhuǎn),圓在內(nèi),且圓在,內(nèi)的射影分別為橢圓,.記橢圓,的離心率分別為,,則的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐中, 平面,底面是菱形, .
(Ⅰ)求證: 平面
(Ⅱ)若求與所成角的余弦值;
(Ⅲ)當(dāng)平面與平面垂直時(shí),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若曲線(xiàn)與在它們的交點(diǎn)處有相同的切線(xiàn),求實(shí)數(shù)a,b的值;
(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)交于兩點(diǎn),,面積的最大值為
(1)求橢圓的方程;
(2)是橢圓上與不重合的一點(diǎn),證明:直線(xiàn)的斜率之積為定值;
(3)當(dāng)點(diǎn)在第一象限時(shí),軸,垂足為,連接并延長(zhǎng)交于點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C過(guò)兩點(diǎn)A(0,4),B(4,6),且圓心在直線(xiàn)x﹣2y﹣2=0上.
(1)求圓C的方程;
(2)若直線(xiàn)l過(guò)原點(diǎn)且被圓C截得的弦長(zhǎng)為6,求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,共享經(jīng)濟(jì)覆蓋的范圍迅速擴(kuò)張,繼共享單車(chē)、共享汽車(chē)之后,共享房屋以“民宿”、“農(nóng)家樂(lè)”等形式開(kāi)始在很多平臺(tái)上線(xiàn).某創(chuàng)業(yè)者計(jì)劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂(lè)”,為了確定未來(lái)發(fā)展方向,此創(chuàng)業(yè)者對(duì)該景區(qū)附近六家“農(nóng)家樂(lè)”跟蹤調(diào)查了天.得到的統(tǒng)計(jì)數(shù)據(jù)如下表,為收費(fèi)標(biāo)準(zhǔn)(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費(fèi)標(biāo)準(zhǔn)與“入住率”的散點(diǎn)圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若從以上六家“農(nóng)家樂(lè)”中隨機(jī)抽取兩家深入調(diào)查,記為“入住率”超過(guò)的農(nóng)家樂(lè)的個(gè)數(shù),求的概率分布列;
(2)令,由散點(diǎn)圖判斷與哪個(gè)更合適于此模型(給出判斷即可,不必說(shuō)明理由)?并根據(jù)你的判斷結(jié)果求回歸方程.(結(jié)果保留一位小數(shù))
(3)若一年按天計(jì)算,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時(shí),年銷(xiāo)售額最大?(年銷(xiāo)售額入住率收費(fèi)標(biāo)準(zhǔn))
參考數(shù)據(jù):
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com