實數(shù)x,y滿足x2+y2+2x-4y+1=0,則
x2+y2-2x+1
的最大值為
 
考點:點與圓的位置關(guān)系,兩點間的距離公式
專題:直線與圓
分析:將條件進(jìn)行化簡,轉(zhuǎn)化為點和圓的位置關(guān)系進(jìn)行求解即可.
解答: 解:x2+y2+2x-4y+1=0等價為(x+1)2+(y-2)2=4,圓心為C(-1,2),比較R=2,
x2+y2-2x+1
=
(x-1)2+y2
表示圓上點P(x,y)到點A(1,0)的距離,
則|AC|=
(-1-1)2+22
=
4+4
=
8
=2
2
,
x2+y2-2x+1
的最大值為|AC|+R=2
2
+2,
故答案為:2
2
+2
點評:本題主要考查點與圓的位置關(guān)系的應(yīng)用以及兩點間的距離公式的應(yīng)用.利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
kx+1,x≤0
lnx,x>0
,下列關(guān)于函數(shù)y=f[f(x)]+1的零點個數(shù)的判斷正確的是( 。
A、無論k為何值,均有2個零點
B、無論k為何值,均有4個零點
C、當(dāng)k>0時,有3個零點;當(dāng)k<0時,有2個零點
D、當(dāng)k>0時,有4個零點;當(dāng)k<0時,有1個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-27,45,-18),
a
=(-9,9,9).在y0z面上找一點B,使得
AB
a
,則點B的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
x→1
x4-1
x3-1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:(
a
+
b
)•(
a
-
b
)=0,q:
a
=
b
,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(-1,cosωx+
3
sinωx),
n
=(f(x),cosωx),其中ω>0,且
m
n
,又函數(shù)f(x)的圖象任意兩相鄰對稱軸間距為
3
2
π.
(Ⅰ)求ω的值;
(Ⅱ)設(shè)α是第一象限角,且f(
3
2
α+
π
2
)=
23
26
,求
sin(α+
π
4
)
cos(4π+2α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則
1
21007
2
1+i
2014=( 。
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m=1”是“直線mx+y=1與直線x-my=1互相垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,其中F1(-2
5
,0),P為C上一點,滿足|OP|=|OF1|且|PF1|=4,則橢圓C的方程為( 。
A、
x2
25
+
y2
5
=1
B、
x2
30
+
y2
10
=1
C、
x2
36
+
y2
16
=1
D、
x2
45
+
y2
25
=1

查看答案和解析>>

同步練習(xí)冊答案