先后拋擲硬幣三次,則有且僅有二次正面朝上的概率是
 
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:先列出所有的基本事件,子啊列出滿足條件的基本事件,代入古典概型的概率公式求出即可.
解答: 解:先后拋擲硬幣三次出現(xiàn)的所有的基本事件:
(正、正、正)、(反、正、正)、(正、反、正)、(正、正、反)
(反、反、正)、(正、反、反)、(反、正、反)、(反、反、反)
共8種情況,
則有且僅有二次正面朝上的事件有:(反、正、正)、(正、反、正)、(正、正、反)
所以有且僅有二次正面朝上的概率P=
3
8
,
故答案為:
3
8
點(diǎn)評(píng):本題考查古典概型下的隨機(jī)事件的概率,列基本事件注意按一定的順序做到不重不漏,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用一平面去截一個(gè)圓錐,設(shè)圓錐的母線與其高的夾角為α,平面的傾斜角為β,求下列情況下β的取值范圍:
(1)所截圖形為橢圓;
(2)所截圖形為雙曲線
(3)所截圖形為拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲有一只放有x個(gè)紅球,y個(gè)黃球,z個(gè)白球的箱子,乙有一只放有3個(gè)紅球,2個(gè)黃球,1個(gè)白球的箱子,
(1)兩人各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時(shí)甲勝,異色時(shí)乙勝,若x+y+z=6(x,y,z∈N)用x、y、z表示甲勝的概率;
(2)在(1)下又規(guī)定當(dāng)甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時(shí)x、y、z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+ax-1在區(qū)間(2,3)內(nèi)沒有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn),且與雙曲線實(shí)軸垂直,又拋物線與雙曲線的一個(gè)交點(diǎn)為(3,2
6
)

(1)求拋物線與雙曲線的方程.
(2)已知直線y=ax+1與雙曲線交于A,B兩點(diǎn),求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二面角α-l-β為60°,AB?α,AB⊥l,A為垂足,CD?β,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖.
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)
.
x
和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表);
(2)若該企業(yè)已經(jīng)生產(chǎn)一批此產(chǎn)品10000件,根據(jù)直方圖給出的數(shù)據(jù)做出估計(jì),問這一批產(chǎn)品中測(cè)量結(jié)果在195-215之間的產(chǎn)品共有多少件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+alnx
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)在(Ⅰ)的條件下,求f(x)的極值;
(Ⅲ)討論f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是函數(shù)y=f(x)(x∈[m,n])圖象上的任意一點(diǎn),M,N該圖象的兩個(gè)端點(diǎn),點(diǎn)Q滿足
MQ
=λ
MN
,
PQ
i
=0(其中0<λ<1,
i
為x軸上的單位向量),若|
PQ
|≤T (T為常數(shù))在區(qū)間[m,n]上恒成立,則稱y=f(x)在區(qū)間[m,n]上具有“T級(jí)線性逼近”.現(xiàn)有函數(shù):
①y=x+1;②y=
1
x
;③y=x2;④y=x3
則在區(qū)間[1,2]上具有“
1
4
級(jí)線性逼近”的函數(shù)的是
 
(填寫符合題意的所有序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案