已知二面角α-l-β為60°,AB?α,AB⊥l,A為垂足,CD?β,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為
 
考點(diǎn):異面直線及其所成的角
專題:計算題,空間位置關(guān)系與距離,空間角
分析:首先作出二面角的平面角,然后再構(gòu)造出異面直線AB與CD所成角,利用解直角三角形和余弦定理,求出問題的答案.
解答: 解:如圖,過A點(diǎn)做AE⊥l,使BE⊥β,垂足為E,
過點(diǎn)A作AF∥CD,過點(diǎn)E做EF⊥AE,連接BF,
∵AE⊥l
∴∠EAC=90°
∵CD∥AF
又∠ACD=135°
∴∠FAC=45°
∴∠EAF=45°
在Rt△BEA中,設(shè)AE=a,則AB=2a,BE=
3
a,
在Rt△AEF中,則EF=a,AF=
2
a,
在Rt△BEF中,則BF=2a,
∴異面直線AB與CD所成的角即是∠BAF,
∴cos∠BAF=
AB2+AF2-BF2
2AB•AF
=
(2a)2+(
2
a)2-(2a)2
2×2a×
2
a
=
2
4

故答案為:
2
4
點(diǎn)評:本題主要考查了二面角和異面直線所成的角,關(guān)鍵是構(gòu)造二面角的平面角和異面直線所成的角,考查了學(xué)生的空間想想能力和作圖能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sinx的圖象上的每一點(diǎn)都沿著向量(
π
4
,-
1
2
)的方向移動
1
2
π2+4
個單位,所得點(diǎn)的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,a1+a2+a3+a4+a5=35,數(shù)列{bn}是等比數(shù)列,b1b2b3b4b5=95,且a1=b2,a4=b3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若a2+b2,a3+b3,a4+b4+m成等比數(shù)列,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y為正實(shí)數(shù),a=
x2+xy+y2
,b=p
xy
,c=x+y.
(1)試比較a、c的大;
(2)若p=1,試證明:以a,b,c為三邊長一定能構(gòu)成三角形;
(3)若對任意的正實(shí)數(shù)x,y,不等式a+b>c恒成立,試求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先后拋擲硬幣三次,則有且僅有二次正面朝上的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了測試某批燈光的使用壽命,從中抽取了20個燈泡進(jìn)行試驗(yàn),記錄如下:(以小時為單位)
171  159、168、166、170、158、169、166、165、162
168  163、172、161、162、167、164、165、164、167
(1)列出樣本頻率分布表;
(2)畫出頻率分布直方圖;
(3)從頻率分布的直方圖中,估計這些燈泡的使用壽命.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,三棱錐M,PA⊥底面ABC,∠ABC=90°,則此三棱錐P-ABC中直角三角形有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),對?x∈R都有f(x-1)=f(x+1)成立,當(dāng)x∈(0,1]且x1≠x2時,有
f(x2)-f(x1)
x2-x1
<0.給出下列命題
(1)f(1)=0
(2)f(x)在[-2,2]上有5個零點(diǎn)
(3)點(diǎn)(2014,0)是函數(shù)y=f(x)的一個對稱中心
(4)直線x=2014是函數(shù)y=f(x)圖象的一條對稱軸.
則正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M={x|x2+4x≤0},則函數(shù)f(x)=-x2-6x+1的最值情況是( 。
A、最小值是1,最大值是9
B、最小值是-1,最大值是10
C、最小值是1,最大值是10
D、最小值是2,最大值是9

查看答案和解析>>

同步練習(xí)冊答案