【題目】【2016高考四川文科】已知數(shù)列{ }的首項(xiàng)為1 為數(shù)列的前n項(xiàng)和, ,其中q>0, .

)若 成等差數(shù)列,求的通項(xiàng)公式;

)設(shè)雙曲線(xiàn) 的離心率為 ,且 ,求.

【答案】(;(.

【解析】

試題分析:()已知的遞推式,一般是寫(xiě)出當(dāng)時(shí),,兩式相減,利用,得出數(shù)列的遞推式,從而證明為等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式得到結(jié)論;()先利用雙曲線(xiàn)的離心率定義得到的表達(dá)式,再由解出的值,最后利用等比數(shù)列的求和公式求解計(jì)算.

試題解析:)由已知, 兩式相減得到.

又由得到,故對(duì)所有都成立.

所以,數(shù)列是首項(xiàng)為1,公比為q的等比數(shù)列.

從而.

成等差數(shù)列,可得,所以,故.

所以.

)由()可知,.

所以雙曲線(xiàn)的離心率.

解得.所以,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,過(guò)拋物線(xiàn)上一點(diǎn)作拋物線(xiàn)的切線(xiàn)軸于點(diǎn),交軸于點(diǎn),當(dāng)時(shí),

1)判斷的形狀,并求拋物線(xiàn)的方程;

2)若兩點(diǎn)在拋物線(xiàn)上,且滿(mǎn)足,其中點(diǎn),若拋物線(xiàn)上存在異于的點(diǎn),使得經(jīng)過(guò)三點(diǎn)的圓和拋物線(xiàn)在點(diǎn)處有相同的切線(xiàn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個(gè)相等實(shí)數(shù)根.

(1)求函數(shù)f(x)的解析式;

(2)當(dāng)x∈[1,2]時(shí),求f(x)的值域;

(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為 (為參數(shù)).

(I)寫(xiě)出直線(xiàn)的一般方程與曲線(xiàn)的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;

(II)將曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,向上平移個(gè)單位長(zhǎng)度,得到曲線(xiàn),設(shè)曲線(xiàn)經(jīng)過(guò)伸縮變換得到曲線(xiàn),設(shè)曲線(xiàn)上任一點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆河北省正定中學(xué)高三上學(xué)期第三次月考(期中)數(shù)學(xué)(理)】在平面直角坐標(biāo)系中,當(dāng)不是原點(diǎn)時(shí),定義的“伴隨點(diǎn)”為;當(dāng)是原點(diǎn)時(shí),定義的“伴隨點(diǎn)”為它自身,平面曲線(xiàn)上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線(xiàn)定義為曲線(xiàn)的“伴隨曲線(xiàn)”,現(xiàn)有下列命題:

①若點(diǎn)的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)的“伴隨點(diǎn)”是點(diǎn)

②若曲線(xiàn)關(guān)于軸對(duì)稱(chēng),則其“伴隨曲線(xiàn)” 關(guān)于軸對(duì)稱(chēng);

③單位圓的“伴隨曲線(xiàn)”是它自身;

④一條直線(xiàn)的“伴隨曲線(xiàn)”是一條直線(xiàn).

其中真命題的個(gè)數(shù)為(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合P={x|-2≤x≤10},Q={x|1-mx≤1+m}.

(1)求集合RP

(2)若PQ,求實(shí)數(shù)m的取值范圍;

(3)若PQQ,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱(chēng)該數(shù)集為“可倒數(shù)集”.

(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;

(2)試寫(xiě)出一個(gè)含3個(gè)元素的可倒數(shù)集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

)若恒成立,求的取值范圍;

)設(shè),,(為自然對(duì)數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案