【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線 .

(Ⅰ)求曲線的普通方程和的直角坐標方程;

(Ⅱ)若相交于兩點,設點,求的值.

【答案】(1)的普通方程為.的直角坐標方程為.(2)

【解析】試題分析:(Ⅰ)消參后得到曲線的普通方程;根據(jù)得到曲線的直角坐標方程;(Ⅱ)將直線的參數(shù)方程代入曲線的直角坐標方程,得到關(guān)于的一元二次方程,而 ,代入根與系數(shù)的關(guān)系得到結(jié)果.

試題解析:(I)為參數(shù))

所以曲線的普通方程為.

,

所以的直角坐標方程為.

(Ⅱ)由題意可設,與兩點對應的參數(shù)分別為,

的參數(shù)方程代入的直角坐標方程,

化簡整理得, ,所以,

所以

因為,所以,

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|x},集合B={x|x≤1},那么U(A∩B)等于( 。
A.{x|x或x>1}
B.{x|x1}
C.{x|x≤或x1}
D.{x|≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點到準線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標為,求的值;

(2)設線段的中點為,點的坐標為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點,已知PA⊥AC,PA=6,BC=8,DF=5.求證:
(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是(  )
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大;
(2)證明AE⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題,其中m,n,l為直線,α,β為平面
①mα,nα,m∥β,n∥βα∥β;
②設l是平面α內(nèi)任意一條直線,且l∥βα∥β;
③若α∥β,mα,nβm∥n;
④若α∥β,mαm∥β.
其中正確的是( 。
A.①②
B.②③
C.②④
D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2.
(1)求證:平面AEF⊥平面PBC;
(2)求三棱錐P﹣AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是矩形,PA⊥底面ABCD,PA=AD,點E、F分別為棱AB、PD的中點. (Ⅰ)求證:AF∥平面PCE;
(Ⅱ)AD與平面PCD所成的角的大。

查看答案和解析>>

同步練習冊答案