【題目】已知全集U=R,集合A={x|x},集合B={x|x≤1},那么U(A∩B)等于( 。
A.{x|x或x>1}
B.{x|x1}
C.{x|x≤或x1}
D.{x|≤x≤1}

【答案】A
【解析】∵全集U=R,
集合A={x|x},集合B={x|x≤1},
∴A∩B={x|x1},
U(A∩B)={x|x< , 或x>1}
故選A.
【考點精析】利用交、并、補集的混合運算對題目進(jìn)行判斷即可得到答案,需要熟知求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強數(shù)形結(jié)合的思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)證明f(x)是奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義證明
(3)求f(x)在[1,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓的中心為原點,長軸在軸上,上頂點為,左,右焦點分別為,線段的中點分別為,且 是面積為4的直角三角形.

1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;

2)過做直線交橢圓于兩點,使,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱一個正方體內(nèi)兩個互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長寬高皆為八分之一正方體的邊長的倒四棱錐“等冪等積”,計算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)設(shè)不等式對滿足的一切實數(shù)的取值都成立,求的取值范圍;

(Ⅱ)是否存在實數(shù),使得不等式對滿足的一切實數(shù)的取值都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , , 的中點.

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國家對消費者購買新能源汽車給予補貼,其中對純電動乘車補貼標(biāo)準(zhǔn)如下表:

某校研究性學(xué)習(xí)小組,從汽車市場上隨機選取了輛純電動乘用車,根據(jù)其續(xù)駛里程(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計表:

(1)求的值;

(2)若從這輛純電動乘用車中任選3輛,求選到的3輛車?yán)m(xù)駛里程都不低于180公里的概率;

(3)如果以頻率作為概率,若某家庭在某汽車銷售公司購買了2輛純電動乘用車,設(shè)該家庭獲得的補貼為(單位:萬元),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正四棱柱的一個截面,此截面與棱交于點 ,其中分別為棱上一點.

(1)證明:平面平面;

(2)為線段上一點,若四面體與四棱錐的體積相等,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線 .

(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;

(Ⅱ)若相交于兩點,設(shè)點,求的值.

查看答案和解析>>

同步練習(xí)冊答案