【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結果中隨機抽取10天的數(shù)據(jù),制表如圖:

每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為X(單位:元),求X的分布列和數(shù)學期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務費.

【答案】1)平均數(shù)為,眾數(shù)為33;(2)詳見解析;(3)甲公司被抽取員工該月收入元,乙公司被抽取員工該月收入元.

【解析】

1)直接利用莖葉圖中數(shù)據(jù)求甲公司員工A投遞快遞件數(shù)的平均數(shù)和眾數(shù).

2)由題意能求出X的可能取值為136,147,154,189,203,分別求出相對應的概率,由此能求出X的分布列和數(shù)學期望.

3)利用(2)的結果能估算算兩公司的每位員工在該月所得的勞務費.

1)甲公司員工A投遞快遞件數(shù)的平均數(shù)為:

眾數(shù)為33.

2)設a為乙公司員工B投遞件數(shù),則

時,元,

時,元,

X的可能取值為136147,154,189,203

,

,,

,

X的分布列為:

X

136

147

154

189

203

P

(元).

3)根據(jù)圖中數(shù)據(jù),由(2)可估算:

甲公司被抽取員工該月收入元,

乙公司被抽取員工該月收入.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱的底面是菱形,,,E,M,N分別是,,的中點.

1)證明:平面;

2)求點C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD中,,M是以CD為直徑的半圓周上的任意一點(與CD均不重合),且平面平面ABCD.

1)求證:平面平面BCM

2)當四棱錐的體積最大時,求AMCD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中為常數(shù)且.新定義:若滿足,則稱的回旋點.

1)當時,分別求的值;

2)當時,求函數(shù)的解析式,并求出回旋點;

3)證明函數(shù)有且僅有兩個回旋點,并求出回旋點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個圓內有6000個點,其中任三點都不共線;①能否把這個圓分成2000塊,使每塊恰含有三個點,如何分?②若每塊中三點滿足:兩兩間的距離皆為整數(shù)且不超過9,則以每塊中的三點為頂點作三角形,這些三角形中大小完全一樣的三角形至少有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,底面為等腰梯形,,,分別是的中點.

1)證明:直線平面;

2)求直線與面所成角的大小;

3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】探月工程“嫦娥四號”探測器于2018128日成功發(fā)射,實現(xiàn)了人類首次月球背面軟著陸.以嫦娥四號為任務圓滿成功為標志,我國探月工程四期和深空探測工程全面拉開序幕.根據(jù)部署,我國探月工程到2020年前將實現(xiàn)“繞、落、回”三步走目標.為了實現(xiàn)目標,各科研團隊進行積極的備戰(zhàn)工作.某科研團隊現(xiàn)正準備攻克甲、乙、丙三項新技術,甲、乙、丙三項新技術獨立被攻克的概率分別為,若甲、乙、丙三項新技術被攻克,分別可獲得科研經(jīng)費萬,萬,.若其中某項新技術未被攻克,則該項新技術沒有對應的科研經(jīng)費.

1)求該科研團隊獲得萬科研經(jīng)費的概率;

2)記該科研團隊獲得的科研經(jīng)費為隨機變量,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】楊輝三角是二項式系數(shù)在三角形中的一種排列,在歐洲這個表叫做帕斯卡三角形,帕斯卡是在1654年發(fā)現(xiàn)這一規(guī)律的,我國南宋數(shù)學家楊輝在1261年所著的《詳解九章算法》一書中出現(xiàn)了如圖所示的表,這是我國數(shù)學史上的一次偉大成就,如圖所示,在楊輝三角中去除所有為1的項,依次構成數(shù)列,23,3,4,6,4,5 ,10 10,5,……,則此數(shù)列的前119項的和為__________(參考數(shù)據(jù):,,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網(wǎng)購平臺為了解某市居民在該平臺的消費情況,從該市使用其平臺且每周平均消費額超過100元的人員中隨機抽取了100名,并繪制右圖所示頻率分布直方圖,已知中間三組的人數(shù)可構成等差數(shù)列.

(1)求的值;

(2)分析人員對抽取對象每周的消費金額y與年齡x進一步分析,發(fā)現(xiàn)他們線性相關,得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為22歲的年輕人每周的平均消費金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點值代替)

查看答案和解析>>

同步練習冊答案