已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=
2
3
3
,過A(a,0),B(0,-b)的直線到原點的距離是
3
2
.求雙曲線的方程.
考點:雙曲線的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:求出直線AB的方程,運用點到直線的距離公式和離心率公式可得a,b,進(jìn)而得到雙曲線的方程.
解答: 解:設(shè)雙曲線的焦距為2c,直線AB的方程為:
x
a
-
y
b
=1

原點到直線AB的距離d=
ab
a2+b2
=
ab
c
=
3
2
,
又∵
c
a
=
2
3
3

∴a=
3
,b=1,
故所求雙曲線方程為 
x2
3
-y2=1
點評:本題考查雙曲線的方程和性質(zhì),考查離心率的運用,考查直線方程和點到直線的距離公式,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)(2+ai)(1-i)(a∈R)是純虛數(shù)(是虛數(shù)單位),則a的值為( 。
A、-2B、-1C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
a
1
b
<0(a,b∈R),則下列不等式恒成立的是( 。
A、a<b
B、a+b>ab
C、|a|>|b|
D、ab<b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一種密碼,明文是由三個字母組成,密碼是由明文對應(yīng)的五個數(shù)字組成,編碼規(guī)則如下表,明文由表中每一排取一個字母組成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,對應(yīng)的密碼由明文對應(yīng)的數(shù)字按相同次序排列組成;(如:明文取的是三個字母為AFP,則與他對應(yīng)的五個數(shù)字(密碼)就為11223.)
第一排字符ABC
字符111213
第二排字符EFG
字符212223
第三排字符MNP
字符123
(Ⅰ)假設(shè)明文是BGN,求這個明文對應(yīng)的密碼;
(Ⅱ)設(shè)隨機變量ξ表示密碼中不同數(shù)字的個數(shù),
①求P(ξ=2);
②求ξ的概率分布列和它的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)直線y=-x+2與圓x2+y2=r2交于A,B兩點,O為坐標(biāo)原點,若圓上一點C滿足
OC
=
5
4
OA
+
3
4
OB,
則r=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:ln(n+1)<1+
1
2
+
1
3
+…+
1
n
(n∈正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),F(xiàn)1,F(xiàn)2分別為其左右焦點,A1,A2分別為其左右頂點,若在該雙曲線的右支上存在一點P,使得PF1與以線段A1A2為直徑的圓相切于點M,且點M為線段PF1的中點,則該雙曲線的離心率為(  )
A、
5
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
|x|2x
x
的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=
1
7
,cos(α-β)=
13
14
,0<β<α<
π
2
,求tan(α+2β)的值.

查看答案和解析>>

同步練習(xí)冊答案