【題目】是異面直線,則以下四個命題:存在分別經(jīng)過直線的兩個互相垂直的平面;存在分別經(jīng)過直線的兩個平行平面;經(jīng)過直線有且只有一個平面垂直于直線;經(jīng)過直線有且只有一個平面平行于直線,其中正確的個數(shù)有(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】對于:可以在兩個互相垂直的平面中,分別畫一條直線,當這兩條直線異面時,可判斷正確

對于:可在兩個平行平面中,分別畫一條直線,當這兩條直線異面時,可判斷正確

對于:當這兩條直線不是異面垂直時,不存在這樣的平面滿足題意,可判斷錯誤

對于:假設過直線a有兩個平面α、β與直線b平行,則面α、β相交于直線a,過直線b做一平面γ與面α、β相交于兩條直線m、n,則直線m、n相交于一點,且都與直線b平行,這與“過直線外一點有且只有一條直線與已知直線平行”矛盾,所以假設不成立,所以正確

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC是圓的內(nèi)接三角形,∠BAC的平分線交圓于點D,交BC于E,過點B的圓的切線與AD的延長線交于點F,在上述條件下,給出下列四個結論:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.

所有正確結論的序號是(
A.①②
B.③④
C.①②③
D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F(xiàn)分別為AC,BC的中點,沿EF將△CEF折起,得到如圖2所示的四棱錐C′﹣ABFE
(1)求證:AB⊥平面AEC′;
(2)當四棱錐C′﹣ABFE體積取最大值時,
①若G為BC′中點,求異面直線GF與AC′所成角;
②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2 sin( ωx)cos( ωx)+2cos2 ωx)(ω>0),且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1 , C2的極坐標方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點O)三點A,B,C.
(Ⅰ)求證:
(Ⅱ)當 時,求點B到曲線C2上的點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著社會的發(fā)展,食品安全問題漸漸成為社會關注的熱點,為了提高學生的食品安全意識,某學校組織全校學生參加食品安全知識競賽,成績的頻率分布直方圖如圖所示,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100),若該校的學生總人數(shù)為3000,則成績不超過60分的學生人數(shù)大約為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,.

)證明:;

)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為梯形,CD∥AB,AB=2CD,AC交BD于O,銳角△PAD所在平面⊥底面ABCD,PA⊥BD,點Q在側棱PC上,且PQ=2QC.

(1)求證:PA∥平面QBD;
(2)求證BD⊥AD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的一系列對應值如下表:

(1)根據(jù)表格提供的數(shù)據(jù)求出函數(shù)的一個解析式;

(2)根據(jù)(1)的結果,若函數(shù)的周期為,當時,方程恰有兩個不同的解,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案