【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為梯形,CD∥AB,AB=2CD,AC交BD于O,銳角△PAD所在平面⊥底面ABCD,PA⊥BD,點(diǎn)Q在側(cè)棱PC上,且PQ=2QC.

(1)求證:PA∥平面QBD;
(2)求證BD⊥AD.

【答案】
(1)證明:如圖,連接OQ,因?yàn)锳B∥CD,AB=2 CD,

所以AO=2OC,又PQ=2QC,

所以PA∥OQ,

又OQ平面QBD,PA平面QBD,

所以PA∥平面QBD


(2)

證明:在平面PAD內(nèi)過(guò)P作PH⊥AD于H,因?yàn)閭?cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD, PH平面PAD,所以PH⊥平面ABCD
又BD平面ABCD,所以PH⊥BD,又PA⊥BD,
且PA和PH是平面PAD內(nèi)的兩條相交直線,所以BD⊥平面PAD,
又AD平面PAD,所以BD⊥AD.


【解析】(1)連接OQ,可得PA∥OQ,即可證得PA∥平面QBD.
(2)在平面PAD內(nèi)過(guò)P作PH⊥AD于H,可得PH⊥平面ABCD,即可得PH⊥BD,可得到以BD⊥平面PAD,即BD⊥AD.
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定和直線與平面垂直的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;垂直于同一個(gè)平面的兩條直線平行才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知A(5,-2),B(7,3),且AC邊的中點(diǎn)My軸上,BC的中點(diǎn)Nx軸上.

(1)求點(diǎn)C的坐標(biāo)

(2)邊上的中線所在直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是異面直線,則以下四個(gè)命題:存在分別經(jīng)過(guò)直線的兩個(gè)互相垂直的平面;存在分別經(jīng)過(guò)直線的兩個(gè)平行平面;經(jīng)過(guò)直線有且只有一個(gè)平面垂直于直線經(jīng)過(guò)直線有且只有一個(gè)平面平行于直線,其中正確的個(gè)數(shù)有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和.求:

I)求數(shù)列的通項(xiàng)公式;

II)求數(shù)列的前n項(xiàng)和;

III)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問(wèn)題,在火車站分別隨機(jī)調(diào)研了 名女性或 名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.

(1)完成下列 列聯(lián)表:

喜歡旅游

不喜歡旅游

估計(jì)

女性

男性

合計(jì)


(2)能否在犯錯(cuò)誤概率不超過(guò) 的前提下認(rèn)為“喜歡旅游與性別有關(guān)”.
附:

/td>

參考公式:
,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),

(1)證明:PA∥平面EDB

(2)證明:平面BDE平面PCB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 中,以 為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.曲線 的極坐標(biāo)方程為 ,曲線 的參數(shù)方程為 為參數(shù)), .
(Ⅰ)求曲線 的直角坐標(biāo)方程,并判斷該曲線是什么曲線?
(Ⅱ)設(shè)曲線 與曲線 的交點(diǎn)為 , , ,當(dāng) 時(shí),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡”45歲為分界點(diǎn),由以上統(tǒng)計(jì)數(shù)據(jù)完成下面 列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在 的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在 的概率.
參考數(shù)據(jù)如下:
附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測(cè)值: (其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的半焦距為 ,原點(diǎn) 到經(jīng)過(guò)兩點(diǎn) 的直線的距離為 .

(Ⅰ)求橢圓 的離心率;
(Ⅱ)如圖, 是圓 的一條直徑,若橢圓 經(jīng)過(guò) 兩點(diǎn),求橢圓 的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案