精英家教網 > 高中數學 > 題目詳情
5.方程${2^{{{log}_3}x}}=\frac{1}{4}$的解為( 。
A.9B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{9}$

分析 方程${2^{{{log}_3}x}}=\frac{1}{4}$=2-2,可得log3x=-2,化為指數式即可得出.

解答 解:方程${2^{{{log}_3}x}}=\frac{1}{4}$=2-2,∴l(xiāng)og3x=-2,解得x=3-2=$\frac{1}{9}$.
故選:D.

點評 本題考查了對數與指數運算性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

17.我國南宋數學家秦九韶(約公元1202-1261年)給出了求n(n∈N*)次多項式anxn+an-1xn-1+…+a1x+a0,當x=x0時的值的一種簡捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項式改寫為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后進行求值.運行如圖所示的程序框圖,能求得多項式( 。┑闹担
A.x4+x3+2x2+3x+4B.x4+2x3+3x2+4x+5C.x3+x2+2x+3D.x3+2x2+3x+4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知△ABC,根據下列條件,求三角形中其他邊和角的大。
(1)A=60°,B=45°,a=10;
(2)a=3,b=4,A=30°.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從開始計數的.
(Ⅰ)根據頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(Ⅲ)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入x(單位:萬元)12345
銷售收益y(單位:萬元)2327
表中的數據顯示,與y之間存在線性相關關系,請將(Ⅱ)的結果填入空白欄,并計算y關于的回歸方程.
回歸直線的斜率和截距的最小二乘估計公式分別為$\frac{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.函數y=2x+1的反函數是( 。
A.y=logx2+1,x>0且x≠1B.y=log2x+1,x>0
C.y=log2x-1,x>0D.y=log2(x-1),x>1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.若A={x|2≤2x≤8},B={x|log2x>1},則A∩B={x|2<x≤3}.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.設全集U=R,若集合A={x|$\frac{x-1}{4-x}$≥0},B={x|log2x≤2},則A∩B=(  )
A.{x|x<4}B.{x|x≤4}C.{x|1≤x<4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知-π<x<0,$sinx+cosx=\frac{1}{5}$.
(1)求sinx-cosx的值; 
(2)求$\frac{3si{n}^{2}\frac{x}{2}-2sin\frac{x}{2}cos\frac{x}{2}+co{s}^{2}\frac{x}{2}}{tanx+\frac{1}{tanx}}$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中曲線部分是圓弧,則此幾何體的表面積為(  )
A.10+2πB.12+3πC.20+4πD.16+5π

查看答案和解析>>

同步練習冊答案