13.某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;
(Ⅱ)估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(Ⅲ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元)12345
銷售收益y(單位:萬元)2327
表中的數(shù)據(jù)顯示,與y之間存在線性相關(guān)關(guān)系,請(qǐng)將(Ⅱ)的結(jié)果填入空白欄,并計(jì)算y關(guān)于的回歸方程.
回歸直線的斜率和截距的最小二乘估計(jì)公式分別為$\frac{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

分析 (Ⅰ)由頻率分布直方圖各小長方形面積總和為1,建立方程,即可求得結(jié)論;
(Ⅱ)利用組中值,求出對(duì)應(yīng)銷售收益的平均值;
(Ⅲ)利用公式求出b,a,即可計(jì)算y關(guān)于x的回歸方程.

解答 解:(Ⅰ) 設(shè)長方形的寬度為m,由頻率分布直方圖各小長方形面積總和為1,
可知(0.08+0.1+0.14+0.12+0.04+0.02)m=1,∴m=2;…(4分)
(Ⅱ) 由(Ⅰ)可知個(gè)小組依次是[0,2),[2,4),[4,6),[6,8),[8,10),[10,12),
其中點(diǎn)分別為1,3,5,7,9,11,對(duì)應(yīng)的頻率分別為0.16,0.20,0.28,0.24,0.08,0.04,
故可估計(jì)平均值為1×0.16+3×0.20+5×0.28+7×0.24+9×0.08+11×0.04=5;(8分)
(Ⅲ) 空白欄中填5.
由題意可知,$\overline{x}$=3,$\overline{y}$=3.8,$\sum_{i=1}^{5}$xiyi=69,$\sum_{i=1}^{5}$xi2=55,∴b=$\frac{69-5×3×3.8}{55-5×{3}^{2}}$=1.2,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=3.8-1.2×3=0.2,
∴y關(guān)于x的回歸方程為y=1.2x+0.2.…(12分)

點(diǎn)評(píng) 本題考查頻率分布直方圖,考查線性回歸方程的求法和應(yīng)用,本題解題的關(guān)鍵是看出這組變量是線性相關(guān)的,進(jìn)而正確運(yùn)算求出線性回歸方程的系數(shù),本題是一個(gè)中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義運(yùn)算a*b為執(zhí)行如圖所示的程序框圖輸出的S值,則${100^{(\frac{1}{2}lg9-lg2)}}*({log_9}8•{log_4}\root{3}{3})$的值為(  )
A.$\frac{13}{16}$B.$\frac{9}{2}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某地在建造游泳池時(shí)需建造附屬室外蓄水池,蓄水池要求容積為300m3,深為3m.如果池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元,那么怎樣設(shè)計(jì)水池的底面的長和寬,才能使蓄水池總造價(jià)最低?最低總造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P為橢圓上一點(diǎn),$|OP|=\frac{{\sqrt{2}}}{4}a$,且|PF1|,|F1F2|,|PF2|成等比數(shù)列,則橢圓的離心率為(  )
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,且四邊形ABCD為菱形,F(xiàn)為棱BB1的中點(diǎn),N為線段AC1的中點(diǎn).
(1)求證:直線MF∥平面ABCD;
(2)求證:平面AFC1⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若圓C:x2+y2=4上的點(diǎn)到直線l:y=x+a的最小距離為2,則a=( 。
A.$2\sqrt{2}$B.$4\sqrt{2}$C.$±2\sqrt{2}$D.$±4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.方程${2^{{{log}_3}x}}=\frac{1}{4}$的解為(  )
A.9B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖畫的某幾何體的三視圖,網(wǎng)格紙上小正方形的邊長為1,則該幾何體的表面積為(  )
A.$144+2\sqrt{10}π$B.$144+({2\sqrt{10}-2})π$C.$128+2\sqrt{10}π$D.$128+({2\sqrt{10}-2})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實(shí)體店.
(1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案