分析 設(shè)底面的長(zhǎng)為xm,寬為ym,蓄水池的總造價(jià)為ω元,由題意列出函數(shù)的解析式,通過(guò)基本不等式求解函數(shù)的最值即可.
解答 解:設(shè)底面的長(zhǎng)為xm,寬為ym,蓄水池總造價(jià)為ω元.
則$ω=120×\frac{300}{3}+100(2×3x+2×3y)=12000+600(x+y)$.
又3xy=300,xy=100,
所以ω=12000+600(x+y)≥12000+600×$2\sqrt{xy}$=24000,
所以當(dāng)設(shè)計(jì)水池的底面的長(zhǎng)和寬均為10m時(shí),使蓄水池總造價(jià)最低,最低造價(jià)是24000元.
點(diǎn)評(píng) 本題考查實(shí)際問(wèn)題的應(yīng)用,基本不等式求解函數(shù)的最值,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x4+x3+2x2+3x+4 | B. | x4+2x3+3x2+4x+5 | C. | x3+x2+2x+3 | D. | x3+2x2+3x+4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
廣告投入x(單位:萬(wàn)元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬(wàn)元) | 2 | 3 | 2 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com