16.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,給出如下數(shù)列:
①5,3,1,-1,-3,-5,-7,…;
②-14,-10,-6,-2,2,6,10,14,18,….
(1)對于數(shù)列①,計(jì)算S1,S2,S4,S5;對于數(shù)列②,計(jì)算S1,S3,S5,S7
(2)根據(jù)上述結(jié)果,對于存在正整數(shù)k,滿足ak+ak+1=0的這一類等差數(shù)列{an}前n項(xiàng)和的規(guī)律,猜想一個(gè)正確的結(jié)論,并加以證明.

分析 (1)直接求和,可得結(jié)論;
(2)ak+ak+1=0,2a1=(1-2k)d,證明S2k-n-Sn=0即可.

解答 解:(1)對于數(shù)列①S1=5,S2=8,S4=8,S5=5;②S1=-14,S3=-30,S5=-30,S7=-14;
(2)∵ak+ak+1=0,2a1=(1-2k)d
S2k-n-Sn=(2k-n)a1+$\frac{(2k-n)(2k-n-1)}{2}$d-na1-$\frac{n(n-1)}{2}d$
=$\fracqkk0usu{2}$[(2k-n)(1-2k)+(2k-n)(2k-n-1)-(1-2k)n-n(n-1)]
=$\fracu8i62au{2}$[2k-4k2-n+2nk+4k2-2kn-2k-2nk+n2+n-n+2kn-n2+n]
=$\fraceeucqsa{2}$•0=0

點(diǎn)評 本題考查數(shù)列求和,考查歸納推理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點(diǎn),且$\frac{AE}{AC}=\frac{AF}{AD}$=λ(0<λ<1).
(1)求二面角A-BE-F的大。
(2)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義“等和數(shù)列”:在一個(gè)數(shù)列中,如果任意相鄰兩項(xiàng)的和都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等和數(shù)列,這個(gè)常數(shù)叫做數(shù)列的公和,已知數(shù)列{an}是等和數(shù)列,Sn是其前n項(xiàng)和,且a1=2,公和為5,則S9=22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.進(jìn)位制是人們?yōu)榱擞?jì)數(shù)和運(yùn)算方便而約定的計(jì)數(shù)系統(tǒng),“滿幾進(jìn)一”就是幾進(jìn)制,不同進(jìn)制之間可以相互轉(zhuǎn)化,例如把十進(jìn)制的89轉(zhuǎn)化為二進(jìn)制,根據(jù)二進(jìn)制數(shù)“滿二進(jìn)一”的原則,可以用2連續(xù)去除89得商,然后取余數(shù),具體計(jì)算方法如下:
$\begin{array}{l}89=2×44+1\\ 44=2×22+0\\ 22=2×11+0\\ 11=2×5+1\\ 5=2×2+1\\ 2=2×1+0\\ 1=2×0+1\end{array}$
把以上各步所得余數(shù)從下到上排列,得到89=1011001(2)這種算法叫做“除二取余法”,上述方法也可以推廣為把十進(jìn)制數(shù)化為k進(jìn)制數(shù)的方法,稱為“除k取余法”,那么用“除k取余法”把89化為七進(jìn)制數(shù)為155(7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知cos(15°+α)=$\frac{15}{17}$,α∈(0°,90°),求sin(15°-α) 的值.
(2)已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知兩條直線l1:x+2my+6=0,l2:(m-2)x+3my+2m=0
問:當(dāng)m為何值時(shí),l1與l2     
(1)平行;   
(2)垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)$y={log_2}(2sinx-1)+\sqrt{1-2cosx}$的定義域?yàn)閇2kπ+$\frac{π}{3}$,2kπ+$\frac{5π}{6}$),(k∈z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義運(yùn)算a*b為執(zhí)行如圖所示的程序框圖輸出的S值,則${100^{(\frac{1}{2}lg9-lg2)}}*({log_9}8•{log_4}\root{3}{3})$的值為( 。
A.$\frac{13}{16}$B.$\frac{9}{2}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某地在建造游泳池時(shí)需建造附屬室外蓄水池,蓄水池要求容積為300m3,深為3m.如果池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元,那么怎樣設(shè)計(jì)水池的底面的長和寬,才能使蓄水池總造價(jià)最低?最低總造價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊答案