9.如圖,測(cè)量河對(duì)岸的塔高AB時(shí),可以選與塔底B在同一水平面內(nèi)的兩個(gè)觀測(cè)點(diǎn)C與D,測(cè)得∠BCD=15°,∠BDC=135°,CD=30m,并在點(diǎn)C處測(cè)得塔頂A的仰角為30°,則塔高AB
為( 。
A.10$\sqrt{2}$ mB.10$\sqrt{3}$ mC.15$\sqrt{6}$ mD.10$\sqrt{6}$ m

分析 先根據(jù)三角形內(nèi)角和為180°,求得∠CBD,再根據(jù)正弦定理求得BC,進(jìn)而在Rt△ABC中,根據(jù)AB=BCtan∠ACB求得AB.

解答 解:在△BCD中,∠BCD=15°,∠BDC=135°,CD=30m,
∠CBD=180°-15°-135°=30°,
由正弦定理,得$\frac{BC}{sin∠BDC}=\frac{CD}{sin∠CBD}$,
所以BC=$\frac{30sin135°}{sin30°}$=30$\sqrt{2}$,
在Rt△ABC中,AB=BC•tan∠ACB=30$\sqrt{2}$tan 30°=10$\sqrt{6}$(m).
所以塔高AB為10$\sqrt{6}$m.
故選:D.

點(diǎn)評(píng) 本題考查了解三角形的實(shí)際應(yīng)用,正弦定理的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)既是奇函數(shù)又在(0,+∞)上為減函數(shù)的是( 。
A.y=-tanxB.y=$\frac{{e}^{-x}-{e}^{x}}{2}$C.y=ln$\frac{1-x}{1+x}$D.y=-x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知(x+1)6(ax-1)2的展開式中含x3項(xiàng)的系數(shù)是20,則a的值等于0或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.解下列關(guān)于x的不等式:
①(1+x)(1-|x|)>0;
②(x+a)(ax-3a)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),f′(x)為其導(dǎo)函數(shù),當(dāng)x>0且x≠1時(shí),$\frac{2f(x)+xf′(x)}{x-1}$>0,若曲線y=f(x)在x=1處的切線的斜率為-$\frac{3}{4}$,則f(1)=$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,若$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$則$\overrightarrow{CA}$=(  )
A.$\overrightarrow{a}$B.$\overrightarrow{a}$+$\overrightarrow$C.$\overrightarrow$-$\overrightarrow{a}$D.$\overrightarrow{a}$-$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果$\overrightarrow{a}$、$\overrightarrow$是兩個(gè)單位向量,那么下列四個(gè)結(jié)論中正確的是( 。
A.$\overrightarrow{a}$=$\overrightarrow$B.$\overrightarrow{a}$•$\overrightarrow$=1C.$\overrightarrow{a}$=-$\overrightarrow$D.|$\overrightarrow{a}$|=|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a>2,b>2,則a+b與ab的大小關(guān)系是( 。
A.a+b>abB.a+b<abC.a+b≥abD.a+b≤ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=($\frac{1}{2}$)x,則f(log2$\sqrt{5}$)=( 。
A.3B.$\frac{\sqrt{5}}{5}$C.$\sqrt{15}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案