【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長(zhǎng)都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AB1與底面ABC所成角的正弦值等于

【答案】
【解析】解:由題意不妨令棱長(zhǎng)為2,如圖,A1在底面ABC內(nèi)的射影為△ABC的中心,故DA= ,
由勾股定理得A1D= =
過B1作B1E⊥平面ABC,則∠B1AE為AB1與底面ABC所成角,且B1E= ,
如圖作A1S⊥AB于中點(diǎn)S,∴A1S= ,
∴AB1= =2
∴AB1與底面ABC所成角的正弦值sin∠B1AE= =
所以答案是:

【考點(diǎn)精析】關(guān)于本題考查的空間角的異面直線所成的角,需要了解已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=f(x)滿足f(0)=3,且f(x+1)﹣f(x)=2x﹣1.
(1)求f(x)的解析式;
(2)求函數(shù)在區(qū)間[﹣2,t](t>﹣2)上的最大值g(t);
(3)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓C過點(diǎn)M(5,2),N(3,2)且圓心在x軸上,點(diǎn)A為圓C上的點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求圓C的方程;
(2)連接OA,延長(zhǎng)OA到P,使得|OA|=|AP|,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)= x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí)C(x)=51x+ ﹣1450(萬元),通過市場(chǎng)分析,若每件售價(jià)為500元時(shí),該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.
(1)寫出年利潤(rùn)L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°

(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C= ,求三棱柱ABC﹣A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為y=2x2+1,值域?yàn)閧5,19}的“孿生函數(shù)”共有( )
A.4個(gè)
B.6個(gè)
C.8個(gè)
D.9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x2﹣2ax+a=0,x∈R},B={x|x2﹣4x+a+5=0,x∈R},若A和B中有且僅有一個(gè)是,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合D= ,有下面四個(gè)命題:
p1(x,y)∈D, ≥3 p2(x,y)∈D, <1
p3(x,y)∈D, <4 p4(x,y)∈D, ≥2
其中的真命題是(
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某日,甲乙二人隨機(jī)選擇早上6:00﹣7:00的某一時(shí)刻到達(dá)黔靈山公園早鍛煉,則甲比乙提前到達(dá)超過20分鐘的概率為(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案