已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,求的值;
(3)直線交橢圓兩不同點(diǎn),軸的射影分別為,若點(diǎn)滿足,證明:點(diǎn)在橢圓上.
(1) ,;(2)-1;(3)詳見解析.

試題分析:(1)根據(jù)拋物線的焦點(diǎn)坐標(biāo)滿足圓的方程確定等量關(guān)系,求解拋物線方程;根據(jù)橢圓的焦點(diǎn)和右定點(diǎn)也在圓上,確定橢圓方程;(2)利用已知的向量關(guān)系式進(jìn)行坐標(biāo)轉(zhuǎn)化求出,然后通過直線與拋物線方程聯(lián)立,借助韋達(dá)定理進(jìn)行化簡并求值;(3)借助向量問題坐標(biāo)化和點(diǎn)在橢圓上,明確點(diǎn)S的坐標(biāo),進(jìn)而證明其在橢圓上.
試題解析:(1)由拋物線的焦點(diǎn)在圓上得:,
∴拋物線 .                          2分
同理由橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在
上可解得:
得橢圓.                                            4分
(2)設(shè)直線的方程為,則
聯(lián)立方程組,消去得:
                           5分
得:
整理得:
.                8分
(3)設(shè),則
;① ;②
;③                                                11分
由①+②+③得
滿足橢圓的方程,命題得證.               13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個交點(diǎn),自上而下順次記為,如果線段的長按此順序構(gòu)成一個等差數(shù)列,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四邊形ABCD的四個頂點(diǎn)都在拋物線上,A,C關(guān)于軸對稱,BD平行于拋物線在點(diǎn)C處的切線。
(Ⅰ)證明:AC平分;
(Ⅱ)若點(diǎn)A坐標(biāo)為,四邊形ABCD的面積為4,求直線BD的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點(diǎn)坐標(biāo)為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點(diǎn),點(diǎn)是曲線上任一點(diǎn),設(shè)點(diǎn)到直線的距離為,則的最小值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點(diǎn)坐標(biāo)是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線與拋物線有一個公共的焦點(diǎn),且雙曲線上的點(diǎn)到坐標(biāo)原點(diǎn)的最短距離為1,則該雙曲線的標(biāo)準(zhǔn)方程是___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為(   )
A.-2B.2C.-4D.4

查看答案和解析>>

同步練習(xí)冊答案