已知橢圓的左焦點(diǎn)為,左準(zhǔn)線為,點(diǎn)線段交橢圓于點(diǎn),若,則_____________
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知焦點(diǎn)在x軸上,離心率為的橢圓的一個(gè)頂點(diǎn)是拋物線的焦點(diǎn),過橢圓右焦點(diǎn)F的直線l交橢圓于A、B兩點(diǎn),交y軸于點(diǎn)M,且
(1)求橢圓的方程;
(2)證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我國計(jì)劃發(fā)射火星探測(cè)器,該探測(cè)器的運(yùn)行軌道是以火星(其半徑百公里)的中心為一個(gè)焦點(diǎn)的橢圓. 如圖,已知探測(cè)器的近火星點(diǎn)(軌道上離火星表面最近的點(diǎn))到火星表面的距離為百公里,遠(yuǎn)火星點(diǎn)(軌道上離火星表面最遠(yuǎn)的點(diǎn))到火星表面的距離為800百公里. 假定探測(cè)器由近火星點(diǎn)第一次逆時(shí)針運(yùn)行到與軌道中心的距離為百公里時(shí)進(jìn)行變軌,其中、分別為橢圓的長半軸、短半軸的長,求此時(shí)探測(cè)器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)在平面直角坐標(biāo)系xOy中,已知三點(diǎn)A(-1,0),B(1,0),,以A、B為焦點(diǎn)的橢圓經(jīng)過點(diǎn)C。
(I)求橢圓的方程;
(II)設(shè)點(diǎn)D(0,1),是否存在不平行于x軸的直線與橢圓交于不同兩點(diǎn)M、N,使
?若存在,求出直線斜率的取值范圍;若不存在,請(qǐng)說明理由:
(III)對(duì)于y軸上的點(diǎn)P(0,n),存在不平行于x軸的直線與橢圓交于不同兩點(diǎn)M、N,使,試求實(shí)數(shù)n的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)直線(其中,為整數(shù))與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓右焦點(diǎn)重合,則的值為(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為(,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以下五個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線與橢圓有相同的焦點(diǎn);
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③設(shè)A、B為兩個(gè)定點(diǎn),為常數(shù),若,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過拋物線的焦點(diǎn)作直線與拋物線相交于A、B兩點(diǎn),則使它們的橫坐標(biāo)之和
等于5的直線有且只有兩條。
⑤過定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若,則動(dòng)點(diǎn)P的
軌跡為橢圓
其中真命題的序號(hào)為                (寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求下列標(biāo)準(zhǔn)方程(8分)
(1)橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別為(0,2),(0,-2),且點(diǎn)P,)在橢圓上.
(2)橢圓長軸是短軸的3倍,且過點(diǎn)A(4,0).
(3)雙曲線經(jīng)過點(diǎn)(-3,2),且一條漸近線為y=x
(4)雙曲線離心率為,且過點(diǎn)(4,).

查看答案和解析>>

同步練習(xí)冊(cè)答案