(本小題滿分14分)
已知焦點在x軸上,離心率為的橢圓的一個頂點是拋物線的焦點,過橢圓右焦點F的直線l交橢圓于A、B兩點,交y軸于點M,且
(1)求橢圓的方程;
(2)證明:為定值。
(1)
(2)證明見解析。
(1)依題意,設(shè)橢圓方程為   (1分)
因為拋物線的焦點為(0,1),所以    (2分)
   (4分)
故橢圓方程   (5分)
(2)依題意設(shè)A、B、M的坐標(biāo)分別為,
由(1)得橢圓的右焦點F(2,0),   (6分)

   (8分)
   (10分)
因為A、B在橢圓上,所以
   (12分)
所以的兩根,
是定值。   (14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面區(qū)域的外接圓軸交于點,橢圓以線段
為長軸,離心率
(1)求圓及橢圓的方程;
(2)設(shè)橢圓的右焦點為,點為圓上異于的動點,過原點作直線的垂線交直線于點,判斷直線與圓的位置關(guān)系,并給出證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題 12分).過點A(-4,0)向橢圓引兩條切線,切點分別為B,C,且為正三角形.
(Ⅰ)求最大時橢圓的方程;
(Ⅱ)對(Ⅰ)中的橢圓,若其左焦點為,過的直線軸交于點,與橢圓的一個交點為,且求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(1)求t的值;
(2)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線的準(zhǔn)線上,則p的值為    。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

10.若曲線的焦點恰好是曲線的右焦點,且交點的連線過點,則曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線與雙曲線。某學(xué)生做了如下變形:由方程組,消去后得到形如的方程。當(dāng)時,該方程有一解,當(dāng)時,恒成立。假設(shè)該學(xué)生的演算過程是正確的,則實數(shù)m的取值范圍是                                                     (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的弦與過弦的端點的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點,則過弦的端點的兩條切線的交點在其準(zhǔn)線上.設(shè)拋物線,弦AB過焦點,△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左焦點為,左準(zhǔn)線為,點線段交橢圓于點,若,則_____________

查看答案和解析>>

同步練習(xí)冊答案