【題目】已知集合A={x|ax2+2x+1=0,a∈R},
(1)若A只有一個元素,試求a的值,并求出這個元素;
(2)若A是空集,求a的取值范圍;
(3)若A中至多有一個元素,求a的取值范圍.
【答案】(1)詳見解析;(2);(3)或
【解析】
(1)根據(jù)方程為一次方程與二次方程分類討論,對應求解得結(jié)果,(2)根據(jù)方程無解條件列不等式,解得結(jié)果,(3)A中至多只有一個元素就是A為空集,或有且只有一個元素,所以求(1)(2)結(jié)果的并集即可.
(1)若A中只有一個元素,則方程ax2+2x+1=0有且只有一個實根,
當a=0時,方程為一元一次方程,滿足條件,此時x=-,
當a≠0,此時△=4-4a=0,解得:a=1,此時x=-1,
(2)若A是空集,
則方程ax2+2x+1=0無解,
此時△=4-4a<0,解得:a>1.
(3)若A中至多只有一個元素,
則A為空集,或有且只有一個元素,
由(1),(2)得滿足條件的a的取值范圍是:a=0或a≥1.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)y=f(x)的圖象像左平移 個單位,再將所得圖象各點的橫坐標縮短為原來的 倍,縱坐標不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一點,PE=2EC.
(1)證明:PC⊥平面BED;
(2)設二面角A﹣PB﹣C為90°,求PD與平面PBC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知有6名男醫(yī)生,4名女醫(yī)生.
(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個不同地區(qū)去巡回醫(yī)療,一個地區(qū)去一名教師,共有多少種分派方法?
(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,共有多少種不同的分法?若將這兩組醫(yī)生分派到兩地去,又有多少種分派方法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)(x∈R)滿足f(﹣x)=f(x),f(x)=f(2﹣x),且當x∈[0,1]時,f(x)=x3 . 又函數(shù)g(x)=|xcos(πx)|,則函數(shù)h(x)=g(x)﹣f(x)在 上的零點個數(shù)為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X)
P( K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣5:不等式選講
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值為8.
(1)確定常數(shù)k,求an;
(2)求數(shù)列 的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
(1)[選修4﹣1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
(2)[選修4﹣2:矩陣與變換]
已知矩陣A的逆矩陣 ,求矩陣A的特征值.
(3)[選修4﹣4:坐標系與參數(shù)方程]
在極坐標中,已知圓C經(jīng)過點P( , ),圓心為直線ρsin(θ﹣ )=﹣ 與極軸的交點,求圓C的極坐標方程.
(4)[選修4﹣5:不等式選講]
已知實數(shù)x,y滿足:|x+y|< ,|2x﹣y|< ,求證:|y|< .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com