【題目】為了解學(xué)生暑假閱讀名著的情況,一名教師對(duì)某班級(jí)的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表.
男生 | |||||
女生 |
()從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生閱讀名著本數(shù)之和為的概率?
()若從閱讀名著不少于本的學(xué)生中任選人,設(shè)選到的男學(xué)生人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
()試判斷男學(xué)生閱讀名著本數(shù)的方差與女學(xué)生閱讀名著本數(shù)的方程的大。
【答案】().
()分布列為
數(shù)學(xué)期望.
().
【解析】分析:(1)先確定總事件數(shù)為,再確定兩名學(xué)生閱讀本數(shù)之和為時(shí)事件數(shù):分兩類男1女3,男2女2,再選人,得,最后根據(jù)古典概型概率公式求結(jié)果,(2)先確定隨機(jī)變量取法,再利用組合數(shù)求對(duì)應(yīng)概率,列表得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望,(3)根據(jù)方差表示穩(wěn)定性含義作出大小判斷.
詳解:
()設(shè)“從此班級(jí)的學(xué)生中隨機(jī)選取一名男生,一名女生”為事件,
這兩名學(xué)生閱讀本數(shù)之和為,
由題意.
()閱讀名著不少于本的學(xué)生共人,其中男學(xué)生人數(shù)為人,
取值為,,,,,
由題意可得,
,
,
,
.
∴隨機(jī)變量的分布列為
均值.
(3) 方差越小數(shù)據(jù)越穩(wěn)定,而男生數(shù)據(jù)沒(méi)女生數(shù)據(jù)穩(wěn)定,所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,側(cè)面底面.
(1)求證:平面平面;
(2)若,且二面角等于,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點(diǎn)為F的拋物線x2=2py(p>0)交于A,B兩點(diǎn),若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長(zhǎng)線上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時(shí)直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面是菱形,底面,是上的任意一點(diǎn)
求證:平面平面
設(shè),求點(diǎn)到平面的距離
在的條件下,若,求與平面所成角的正切值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開(kāi)發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20 , 接下來(lái)的兩項(xiàng)是20 , 21 , 再接下來(lái)的三項(xiàng)是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是( 。
A.440
B.330
C.220
D.110
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}和{bn}是兩個(gè)等差數(shù)列,記cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個(gè)數(shù)中最大的數(shù).(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并證明{cn}是等差數(shù)列;
(2)證明:或者對(duì)任意正數(shù)M,存在正整數(shù)m,當(dāng)n≥m時(shí), >M;或者存在正整數(shù)m,使得cm , cm+1 , cm+2 , …是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P-ABCD的底面為等腰梯形, AB∥CD,AC⊥BD,垂足為H, PH是四棱錐的高,E為AD中點(diǎn),設(shè)
1)證明:PE⊥BC;
2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com