已知雙曲線x2-
y2
b2
=1(b>0)的離心率為
10
,則b=
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由雙曲線x2-
y2
b2
=1(b>0)的離心率
10
,可得a=1,c=
10
,求出b,即可求出b的值.
解答: 解:∵雙曲線x2-
y2
b2
=1(b>0)的離心率為
10

∴a=1,c=
10
,
∴b=
10-1
=3,
故答案為:3
點評:本題主要考查雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn(n∈N*),若S9=9,Tn為數(shù)列{
Sn
n
}的前n項和,則T17=( 。
A、9B、17C、26D、153

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前10項和S10=15,則a1+a4+a7+a10等于( 。
A、3B、6C、10D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,A,B,C所對的邊為a,b,c.向量
m
=(
3
sin2x,1),
n
=(1,3+cos2x),設(shè)函數(shù)f(x)=
m
n

(1)討論f(x)的單調(diào)區(qū)間;
(2)若2
AC
BC
=
2
ab,c=2
2
,f(A)=4,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間直角坐標(biāo)系中,點P(-1,2,2)到原點O的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的相鄰兩項an,an+1是關(guān)于x的方程x2-2nx+bn=0(n∈N*)的兩根,且a1=1
(1)求數(shù)列{an}的通項公式
(2)設(shè)函數(shù)f(n)=bn-t•Sn(n∈N*),其中Sn為數(shù)列{an}的前n項和,若f(n)>0對任意的n∈N*都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的圖象過點(0,4),對任意x滿足f(3-x)=f(x),且有最小值
7
4

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)h(x)=f(x)-(2t-3)x(t∈R)在區(qū)間[0,1]上的最小值;
(3)是否存在實數(shù)m,使得在區(qū)間[-1,3]上函數(shù)f(x)的圖象恒在直線y=2x+m的上方?若存在,求出實數(shù)m的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知C
 
2n-2
n2-7n
+A13-n3>2×5!,n∈N*,那么n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-2x2+2x,x≤1
1
x
-1,
x>1
,若對任意x∈R,f(x)-|x-k|-|x-1|≤0恒成立,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案