【題目】某餐廳經(jīng)營盒飯生意,每天的房租、人員工資等固定成本為200元,每盒盒飯的成本為15元,銷售單價(jià)與日均銷售量的關(guān)系如下表
根據(jù)以上數(shù)據(jù),當(dāng)這個(gè)餐廳每盒盒飯定價(jià)______元時(shí),利潤最大
A.16.5B.19.5C.21.5D.22
【答案】C
【解析】
根據(jù)題中所給的數(shù)據(jù)可以得出日銷售量與定價(jià)成一次函數(shù)關(guān)系,根據(jù)題意得到利潤與定價(jià)的函數(shù)關(guān)系,最后求出最大值即可.
由題目給的表中數(shù)量可以知道:定價(jià)每增加一元,日銷售量減少40盒,所以設(shè)定價(jià)(元)與日銷售量(盒)的函數(shù)關(guān)系式為:,任取表中兩組數(shù)據(jù),不妨取前二組,代入解析式中得:,設(shè)利潤為(元),
由題意可知:,由基本不等式可知:
根據(jù)二次函數(shù)的性質(zhì)可知:當(dāng)時(shí),函數(shù)有最大值,即當(dāng)這個(gè)餐廳每盒盒飯定價(jià)21.5元時(shí),利潤最大.
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體中, AC⊥BC,四邊形ABED是正方形,平面ABED⊥平面ABC,點(diǎn)F,G,H分別為BD,EC,BE的中點(diǎn),求證:
(1) BC⊥平面ACD
(2)平面HGF∥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,,,為線段的中點(diǎn),是線段上一動(dòng)點(diǎn).
(1)當(dāng)時(shí),求證:面;
(2)當(dāng)的面積最小時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為(t為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點(diǎn)是曲線上一點(diǎn),,求點(diǎn)到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,OB、CD是兩條互相平行的筆直公路,且均與筆直公路OC垂直(公路寬度忽略不計(jì)),半徑OC=1千米的扇形COA為該市某一景點(diǎn)區(qū)域,當(dāng)?shù)卣疄榫徑饩包c(diǎn)周邊的交通壓力,欲在圓弧AC上新增一個(gè)入口E(點(diǎn)E不與A、C重合),并在E點(diǎn)建一段與圓弧相切(E為切點(diǎn))的筆直公路與OB、CD分別交于M、N.當(dāng)公路建成后,計(jì)劃將所圍成的區(qū)域在景點(diǎn)之外的部分建成停車場(chǎng)(圖中陰影部分),設(shè)∠CON=θ,停車場(chǎng)面積為S平方千米.
(1)求函數(shù)S=f(θ)的解析式,并寫出函數(shù)的定義域;
(2)為對(duì)該計(jì)劃進(jìn)行可行性研究,需要預(yù)知所建停車場(chǎng)至少有多少面積,請(qǐng)計(jì)算當(dāng)θ為何值時(shí),S有最小值,并求出該最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①命題“”的否定是“”;
②已知為兩個(gè)命題,若為假命題,則為真命題;
③“”是“”的充分不必要條件;
④“若則且”的逆否命題為真命題.
其中 真命題的序號(hào)是__________.(寫出所有滿足題意的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn),線段的中垂線與線段交于點(diǎn).
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)若直線與曲線相交于兩點(diǎn),且存在點(diǎn)(其中不共線),使得被軸平分,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評(píng)估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com