【題目】已知數(shù)列,滿足:,

1)若是等差數(shù)列,且公差,求數(shù)列的通項(xiàng)公式;

2)若、均是等差數(shù)列,且數(shù)列的公差,,求數(shù)列的通項(xiàng)公式.

【答案】12

【解析】

1是等差數(shù)列,且公差,,所以,由,進(jìn)而算出,利用累加法,即可求出數(shù)列的通項(xiàng)公式;

2)因?yàn)?/span>是等差數(shù)列,且數(shù)列的公差,,所以,得出,根據(jù)題意,進(jìn)而求出,可得出的首項(xiàng)和公差,求得,所以,分類討論為奇數(shù)和偶數(shù)時(shí),求出數(shù)列的通項(xiàng)公式.

1)因?yàn)?/span>是等差數(shù)列,且公差,

所以,

所以,

因?yàn)?/span>,

即:

所以,

,

,

上面式子相加得:

,

所以,

當(dāng)時(shí)也滿足上面的通項(xiàng),

綜上:數(shù)列的通項(xiàng)公式

2)因?yàn)?/span>是等差數(shù)列,且數(shù)列的公差,

所以①,

②,

得:,即

所以,,

因?yàn)?/span>是等差數(shù)列,設(shè)等差數(shù)列的公差為,

所以,,由此解得:,,

所以,滿足,即,

因?yàn)?/span>,所以,所以

①當(dāng)時(shí),,所以,

②當(dāng)時(shí),,所以

綜上:數(shù)列的通項(xiàng)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓且斜率為的直線交圓兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),

(1)求橢圓的方程.

(2)當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4-5:不等式選講

已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).

(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;

(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請(qǐng)全校名同學(xué)每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求曲線的極坐標(biāo)方程和曲線的普通方程;

2)設(shè)射線與曲線交于不同于極點(diǎn)的點(diǎn),與曲線交于不同于極點(diǎn)的點(diǎn),求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)實(shí)力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實(shí)現(xiàn)翻番.同時(shí)該家庭的消費(fèi)結(jié)構(gòu)隨之也發(fā)生了變化,現(xiàn)統(tǒng)計(jì)了該家庭這兩年不同品類的消費(fèi)額占全年總收入的比例,得到了如下折線圖:

則下列結(jié)論中正確的是( )

A. 該家庭2018年食品的消費(fèi)額是2014年食品的消費(fèi)額的一半

B. 該家庭2018年教育醫(yī)療的消費(fèi)額與2014年教育醫(yī)療的消費(fèi)額相當(dāng)

C. 該家庭2018年休閑旅游的消費(fèi)額是2014年休閑旅游的消費(fèi)額的五倍

D. 該家庭2018年生活用品的消費(fèi)額是2014年生活用品的消費(fèi)額的兩倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級(jí)過濾,每一級(jí)過濾都由核心部件濾芯來實(shí)現(xiàn).在使用過程中,一級(jí)濾芯需要不定期更換,其中每更換個(gè)一級(jí)濾芯就需要更換個(gè)二級(jí)濾芯,三級(jí)濾芯無需更換.其中一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元.記一臺(tái)凈水器在使用期內(nèi)需要更換的二級(jí)濾芯的個(gè)數(shù)構(gòu)成的集合為.如圖是根據(jù)臺(tái)該款凈水器在十年使用期內(nèi)更換的一級(jí)濾芯的個(gè)數(shù)制成的柱狀圖.

(1)結(jié)合圖,寫出集合

(2)根據(jù)以上信息,求出一臺(tái)凈水器在使用期內(nèi)更換二級(jí)濾芯的費(fèi)用大于元的概率(以臺(tái)凈水器更換二級(jí)濾芯的頻率代替臺(tái)凈水器更換二級(jí)濾芯發(fā)生的概率);

(3)若在購買凈水器的同時(shí)購買濾芯,則濾芯可享受折優(yōu)惠(使用過程中如需再購買無優(yōu)惠).假設(shè)上述臺(tái)凈水器在購機(jī)的同時(shí),每臺(tái)均購買個(gè)一級(jí)濾芯、個(gè)二級(jí)濾芯作為備用濾芯(其中),計(jì)算這臺(tái)凈水器在使用期內(nèi)購買濾芯所需總費(fèi)用的平均數(shù).并以此作為決策依據(jù),如果客戶購買凈水器的同時(shí)購買備用濾芯的總數(shù)也為個(gè),則其中一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù)應(yīng)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校需要從甲、乙兩名學(xué)生中選一人參加數(shù)學(xué)競賽,抽取了近期兩人次數(shù)學(xué)考試的成績,統(tǒng)計(jì)結(jié)果如下表:

第一次

第二次

第三次

第四次

第五次

甲的成績(分)

乙的成績(分)

(1)若從甲、乙兩人中選出一人參加數(shù)學(xué)競賽,你認(rèn)為選誰合適?請(qǐng)說明理由.

(2)若數(shù)學(xué)競賽分初賽和復(fù)賽,在初賽中有兩種答題方案:

方案一:每人從道備選題中任意抽出道,若答對(duì),則可參加復(fù)賽,否則被淘汰.

方案二:每人從道備選題中任意抽出道,若至少答對(duì)其中道,則可參加復(fù)賽,否則被潤汰.

已知學(xué)生甲、乙都只會(huì)道備選題中的道,那么你推薦的選手選擇哪種答題方條進(jìn)人復(fù)賽的可能性更大?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn),當(dāng)直線軸垂直時(shí),.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)直線軸不垂直時(shí),在軸上是否存在一點(diǎn)(異于點(diǎn)),使軸上任意點(diǎn)到直線,的距離均相等?若存在,求點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊答案